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ABSTRACT 

The evidence of improved performance of agriculture in Africa south of the Sahara (SSA) in recent years 
has indeed been quite striking when compared with the past. For the first time, the sector has maintained a 
real growth rate of 3.4 percent per year, well above the population growth rate of 2.5 percent. Despite this 
improved performance, agricultural productivity growth in SSA continues to lag behind every other 
region of the world, growing at rates that are roughly half of the average rate of developing countries. 
Previous studies concluded that SSA should increase investment in agricultural research and development 
(R&D), highlighting the need to facilitate farmers access to technology, markets, and the necessary 
support services for raising agricultural productivity. This study introduces a new dimension to the puzzle 
of agricultural productivity growth in SSA: the role of the input mix and the need to increase capital and 
inputs per worker not only to boost output per worker but also to accelerate technology adoption and total 
factor productivity (TFP) growth. According to the appropriate technology hypothesis, advanced 
countries invent technologies that are compatible with their own factor mix, but these technologies are 
less productive with the very different factor mix of poor countries. This potential dependence of 
productivity on inputs could explain differences in income levels and the lack of convergence in labor 
productivity. This study revisited past performance of agriculture in SSA using a growth-accounting 
approach to get a better understanding of the role of inputs on TFP gaps. Our findings show that 
differences in labor productivity among SSA countries are explained mostly by differences in input per 
worker, that low levels of input per worker are associated with less productive technologies, and that 
technical change in the last 30 years has shifted the world frontier unevenly, increasing the distance 
between SSA countries and those countries with the right input mix. We also found that SSA countries 
using higher levels of input per worker have benefited more from technological progress than poorer 
countries, suggesting that technical change has done little to reduce the gap in labor productivity between 
countries. The need of an appropriate technology for SSA could have significant implications in terms of 
policy, allocation of R&D investment, the type of technologies to promote, and the growth path that 
countries should follow to sustain growth. 

Key words:  agriculture, appropriate technology, total factor productivity, Africa south of the 
Sahara 
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1. INTRODUCTION 

The evidence of improved performance of agriculture in Africa south of the Sahara (SSA) in recent years 
has indeed been quite striking when compared with the past. For the first time, the sector has maintained a 
real growth rate of 3.4 percent per year, well above the population growth rate of 2.5 percent. Recent 
studies (for example, Alene 2010; Block 1995, 2010; Fuglie 2011; Fuglie and Rada 2012; Nin-Pratt and 
Yu 2008, 2012) have shown how African agricultural performance improved in the aftermath of political, 
policy, and institutional reforms since the 1990s, increasing public investment and reducing the heavy 
taxation on agriculture. On the other hand, most of these studies concluded that the region should increase 
its efforts to accelerate total factor productivity (TFP) growth and technical change. 

For example, Fuglie and Rada (2012) showed that despite recent improvement, agricultural 
productivity growth in SSA continues to lag behind every other region of the world, growing at rates that 
are roughly half of the average rate of developing countries. They concluded that SSA should increase its 
accumulated knowledge capital from long-term national and international investments in agricultural 
research and development (R&D), which are gradually delivering improved technologies to farmers. At 
the same time, they highlight the need to strengthen the broader enabling environment for farmers to 
access technology, markets, and the necessary support services for raising agricultural productivity in 
SSA. Similarly, Nin-Pratt and Yu (2012) concluded that several warning signs still exist, calling for more 
efforts to sustain TFP growth in the coming years, arguing that without increases in the rate of growth of 
technical change, TFP growth is expected to slow down in the coming years as countries catch up with 
efficiency levels at the production frontier. 

Acknowledging the need to accelerate technical change through increasing investments in 
agricultural R&D and to improve the enabling environment for technology adoption, this study introduces 
a second dimension to the puzzle of agricultural growth in SSA countries: the role of the input mix and 
the need to increase capital and inputs per worker not only to boost output per worker but also to 
accelerate technology adoption and TFP growth. This has significant implications in terms of policy, 
allocation of R&D investment, the type of technologies to promote, and the growth path that countries 
could follow depending on how we interpret the role of capital in the process of technical change and its 
effect on productivity levels.  

The level and combination of labor, capital, and inputs has not been central to the discussion of 
technical change and TFP growth in part because the conceptual framework normally used to analyze 
these issues assumes a uniform technology frontier for all countries. This means that a poor country using 
mostly labor and land and very little capital can produce at similar levels of output per unit of input than 
richer countries using a different combination of inputs (for example, high levels of capital per worker). If 
observed TFP levels in poor countries are low, these differences in productivity reflect inefficiency or a 
gap from the frontier that can be closed if poor countries have access to technologies used by frontier 
countries. Why do improved technologies not diffuse across borders, allowing SSA to catch up? 
According to this view, the reason is that barriers to the adoption of technology might exist, such as those 
resulting from agroecological differences, institutional differences, or inefficient social arrangements (for 
example, lack of competitive markets). These differences could result in lack of technologies due to 
barriers to adoption and also in the inefficient use of technologies already in place. If countries are able to 
reduce these barriers (such as by adapting technologies to their agroecologies and improving institutions 
and infrastructure), TFP levels should converge to those of richer countries. The assumption is that large 
gains can be made in terms of TFP by closing the technological gap even by poor countries at low levels 
of capitalization, and that technical change is “neutral,” so innovations from rich countries should benefit 
poor countries after some investment is done to adapt these technologies to a different economic 
environment. 

What happens if the technological frontier is not uniform and not every country can reach the 
same TFP level? Or as Jerzmanowksi (2007) puts it, what if countries choose the best technologies 
available to them but their choice is limited by the fact that not all existing technologies are equally suited 
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to every economy? Then the relevant question becomes, what determines whether certain technologies are 
appropriate for a particular economy? One possible answer to this question is provided by the literature on 
appropriate technology, which argues that depending on the country’s relative stocks of physical and 
human capital, some technologies may be more or less productive than others. Formally, this means that 
TFP is a function of factor endowments. Recent theoretical contributions have emphasized the potential 
dependence of productivity on inputs such as physical or human capital, invoking the appropriate 
technology paradigm to explain differences in income levels and the lack of convergence (for example, 
Basu and Weil 1998; Acemoglu and Zilibotti 2001). In these models, rich countries invent technologies 
that are compatible with their own factor mix, but these technologies do not work well with the very 
different factor mix of poor countries. For example, some agricultural technologies require the intensive 
use of capital (irrigation and mechanization) or an appropriate match of land and machines (such as 
tractors). Consequently, these technologies are “inappropriate” for poor countries with high capital costs 
and when adapted to their economic conditions will not result in the same gains in TFP as those observed 
in richer countries. 

In summary, the appropriate technology theory argues that low TFP is a result of the technology 
frontier being lower for some factor endowments. On the other hand, what Jerzmanowski (2007) calls the 
“efficiency” view maintains that the frontier is the same everywhere, but some countries operate below it. 
A better understanding of the role of inputs on TFP gaps could have important policy implications. 
Should SSA countries promote commercial agriculture so that a group of producers could converge faster 
to production conditions in richer countries to overcome technology “inappropriateness”? Should 
governments invest in agricultural R&D to develop technologies appropriate for poor households that are 
producing with low levels of capital, assuming that new productive techniques can always be developed? 
Or, is there a limit to increase productivity at a certain level of capital per worker especially if this level is 
very low, meaning that the oxcart can only be improved so much? Can we still expect large gains in 
productivity from improvements in efficiency and adoption of existing technologies? Is the slow pace of 
technology adoption and TFP growth in SSA the result of inappropriateness of technology given the very 
particular conditions and low levels of capitalization of agriculture in these countries? Looking for 
answers to these questions is important because different strategies can have different costs in terms of 
investment, time, and welfare for SSA economies.  

Unlike previous papers that have looked at agricultural growth in SSA, in this study we 
decompose levels and growth in output per worker using a growth-accounting approach to analyze the 
explanatory power of the efficiency versus the appropriate technology hypothesis to explain productivity 
differences between SSA and other countries. In the next section we present the conceptual framework 
and methodological approach used in this study. Our approach requires the estimation of the world’s 
technological frontier and of the technical efficiency of the SSA countries in our sample. Efficiency 
measures together with econometric estimates of input elasticities of a Cobb–Douglas production function 
are the main components of our model. Section 3 describes the data used, as well as technical aspects and 
results of the efficiency and input elasticities estimation. Section 4 revisits the analysis of past 
performance of agriculture in SSA, looking at growth of output per worker and its decomposition into 
efficiency, technical change, and input growth. Section 5 shows results of the decomposition of the levels 
of output per worker into levels of efficiency, technology, and inputs and how the efficiency and 
appropriate technology explain differences in labor productivity and TFP levels. The last section 
concludes and derives policy implications.  
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2. CONCEPTUAL FRAMEWORK AND APPROACH 

An accepted view on the analysis of agricultural productivity adopts a Cobb–Douglas production function 
with constant returns to scale to estimate TFP assuming that countries have access to a common 
technology represented as y = AПxα, where y and x are output and input per worker, respectively, and A 
represents TFP or the part of output not explained by inputs x. This view implies a uniform technology 
frontier for all countries; that is, all countries face the same A in the production function, and differences 
in TFP reflect inefficiency or a gap from the frontier due to barriers to the adoption of technology, natural 
resources, or lack of competitive markets or other efficient social arrangements (Jerzmanowski 2007). 
Basu and Wail (1998, 1025) provide a good example on the implications of the model’s assumptions: “Do 
all countries in the world use the same technology? Many would view even the posing of this question as 
absurd. In India, fields are harvested by bands of sweating workers, bending to use their scythes. In the 
United States one farmer does the same work, riding in an air-conditioned combine. Yet an economist 
might argue that the two countries do have access to the same technology and simply choose different 
combinations of inputs (points along an isoquant) due to differences in factor prices. But this stance raises 
a new problem when one considers technological change: do technology improvements that raise the 
productivity of combines in America also improve the productivity of farmers in India? The answer 
obviously seems to be No. However, standard models of economic growth, which index technology by a 
single coefficient that is independent of factor proportions, would say yes. In these models, technology 
improvements in the United States should immediately improve total factor productivity in India—which 
seems counterfactual.” 

An alternative view to the standard growth-accounting analysis asserts that the 
technology frontier is not uniform (that is, not every country faces the same A in the production 
function above) and that countries choose the best technologies available to them; however, their 
choice is limited by the fact that not all existing technologies are equally suited to every 
economy. One explanation for this is that appropriateness depends on the mix of inputs. That is, 
depending on the country’s relative stocks of labor, skills, and physical capital, some technologies 
may be more or less productive than others. Under this assumption the A in the Cobb–Douglas 
production function becomes A = A(x) (Jerzmanowski 2007). As discussed in Basu and Weil 
(1998) and Acemoglu and Zilibotti (2001), the appropriate technology paradigm explains 
differences in income levels and the lack of convergence. For example, in the paper by Acemoglu 
and Zilibotti (2001), rich countries invent technologies that are compatible with their own factor 
mix, but these technologies do not work well with the very different factor mix of poor countries, 
and consequently the most productive technologies are inappropriate for developing countries 
and, even if adopted, do not raise their TFP levels.  

In this section we present a model of appropriate technology adapted from Jerzmanowski 
(2007), which is part of a large literature—including Basu and Weil (1998), Parente and Prescott 
(1994), Segerstrom, Anant, and Dinapoulos (1990), Grossman and Helpman (1991), and Barro 
and Sala-i-Martin (1997), among others—that examines barriers to the transfer of technology 
across countries. We start by presenting the basic elements of the growth-accounting method, 
followed by the nonparametric approach to productivity analysis. We then combine elements of 
these two approaches to define a hybrid model where the Cobb–Douglas production function is 
defined as a frontier function and TFP is decomposed into an efficiency component that is 
independent of the level of inputs and a technology component expressed as a function of input 
per worker. 

Growth-Accounting Approach 
Much of the literature on agricultural productivity assumes a Cobb–Douglas production function with 
constant returns to scale to estimate TFP since the seminal agricultural studies by Griliches (1964) and 
Hayami and Ruttan (1985). Eberhardt and Teal’s (2013) review of the literature refers to several studies 
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applied to agriculture using the Cobb–Douglas function, including Craig, Pardy, and Roseboom (1997); 
Cermeno, Maddala, and Trueblood (2003); Bravo-Ortega and Lederman (2004); and Fulginiti, Perrin, and 
Yu (2004). Recent work looking specifically to SSA agriculture includes Block (2010) and Fuglie (2011). 
Under this approach, the output per worker in country i is given by 

 𝑦𝑦𝑖𝑖 = 𝐹𝐹𝑖𝑖(𝑥𝑥) = 𝐴𝐴𝑖𝑖 ∏𝑥𝑥𝑖𝑖𝑖𝑖
𝛼𝛼𝑗𝑗 , (2.1) 

where yi is agricultural output per worker, xj is a set of observed inputs per worker, and Ai is unobserved 
TFP with technology parameters αj constant over time. The production function shifter Ai can be modeled 
borrowing from Fuglie (2011) as 

 𝑙𝑙𝑙𝑙 (𝐴𝐴𝑖𝑖) = 𝑇𝑇𝑖𝑖 + 𝜂𝜂𝑖𝑖 + ∑𝛽𝛽𝑘𝑘𝑘𝑘𝑍𝑍𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖,  (2.2) 

where T represents technology levels, 𝜂𝜂𝑖𝑖 is a random and unobserved country-specific effect, Zki are 
observed differences in resource quality, and 𝜀𝜀𝑖𝑖 is a random component capturing measurement error. 
Changes in Ai over time shift the production function and are interpreted as factor-neutral improvements 
in technology or production efficiency.  

As discussed in Fuglie (2011), production elasticities αj can be interpreted as the share of output 
that each input receives in payment for its contribution to the production process, and under certain 
assumptions this share indicates the payments that the owners of these resources receive when inputs are 
paid their value-marginal product. In this way, econometric estimation of the parameters of the production 
function are used instead of input prices, which are normally not available, to define TFP and an index of 
TFP growth expressed in terms of growth rates: 

 𝑙𝑙𝑙𝑙 (𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) = 𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖) − ∑𝛼𝛼𝑗𝑗𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖𝑖𝑖)  (2.3) 

 𝑇𝑇𝑇𝑇𝑇𝑇̇ = 𝑌̇𝑌𝑖𝑖 − ∑𝛼𝛼𝑗𝑗𝑥̇𝑥𝑖𝑖𝑖𝑖   (2.4) 

One of the disadvantages of this approach is that it involves strong technical and economic assumptions, 
like profit maximization and imposing a functional form. On the other hand, Fuglie (2011) argues that 
imposing more structure could be an advantage when dealing with data with a high degree of 
measurement error as it can help produce more plausible results. 

Nonparametric Approach 
The nonparametric approach, also known as Data Envelopment Analysis (DEA) and based on distance 
functions, has become especially popular because it is easy to compute and does not require information 
about input or output prices or assumptions regarding economic behavior, such as cost minimization and 
revenue maximization. The method has been extensively applied to the international comparison of 
agricultural productivity. See, for example, Bureau, Färe, and Grosskopf (1995); Fulginiti and Perrin 
(1997); Lusigi and Thirtle (1997); Prasada Rao and Coelli (2004); Arnade (1998); Fulginiti and Perrin 
(1999); Chavas (2001); Suhariyanto, Lusigi, and Thirtle (2001); Suhariyanto and Thirtle (2001); 
Trueblood and Coggins (2003); Nin, Arndt, and Preckel (2003); and Ludena et al. (2007). 

In general, the nonparametric approach assumes that agricultural output per worker in country i is 
given by a production function of the form 

 𝑦𝑦𝑖𝑖 = 𝐸𝐸𝑖𝑖 × 𝐹𝐹(𝑥𝑥), (2.5) 

where y is output per worker, x is a vector of inputs used in production, and E measures efficiency in the 
use of inputs and takes values between 0 and 1. The production function F(x) satisfies free disposal and 
constant returns to scale and represents the production possibility frontier or the maximum attainable 
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output given inputs. Actual output y results from the product of potential output and efficiency. In this 
context the production set S is defined as 

 𝑆𝑆 = {(𝑥𝑥,𝑦𝑦):𝑦𝑦 ≤ 𝐹𝐹(𝑥𝑥)}. (2.6) 

The output distance function D(x,y) expresses the maximum proportional expansion of output given 
inputs, or the maximum increase in output (within S) given that inputs remain constant, which is captured 
by θ as follows: 

 𝐷𝐷(𝑥𝑥,𝑦𝑦) = [𝑠𝑠𝑠𝑠𝑠𝑠{𝜃𝜃: (𝑥𝑥,𝜃𝜃𝜃𝜃) ∈ 𝑆𝑆}]−1 (2.7) 

where D(x,y) ≤ 1 if and only if (x,y) ϵ S, and D(x,y) = 1 implies that production takes place on the 
frontier. The distance function for a particular country i* is estimated using linear programming as 
described in Section 3.  

Growth in output per worker between periods 0 and 1 can be represented, adapting notation from 
Kumar and Russell (2002), as 

 𝑦𝑦1
𝑦𝑦0

= 𝐸𝐸1×𝐹𝐹1(𝑥𝑥1)
𝐸𝐸0×𝐹𝐹0(𝑥𝑥0)

, (2.8) 

where y1 and y0 represent output per worker in the final and initial periods, respectively; F1(x1) is potential 
output that can be achieved using technology of the final period and the amount of inputs used in that 
same period; and E1 is efficiency of country i in the final period. Multiplying the top and bottom by F0(x1) 
or potential output that can be obtained using the technology of the initial period with inputs used in the 
final period, we obtain 

 𝑦𝑦1
𝑦𝑦0

= 𝐸𝐸1
𝐸𝐸0

× 𝐹𝐹1(𝑥𝑥1)
𝐹𝐹0(𝑥𝑥1)

× 𝐹𝐹0(𝑥𝑥1)
𝐹𝐹0(𝑥𝑥0)

 (2.9) 

Equation (2.9) is a decomposition of change in the output–labor ratio between two periods for country i. 
The first term on the right-hand side is the change in efficiency or the change in the distance to the 
frontier; the second term is the shift of the frontier between the two periods measured relative to the 
coordinates of country i in output space in the final period (potential output is measured with respect to 
x1); and the last term is a measure of the change in potential output as a result of a change in the level of 
inputs, or movement along the frontier in the initial period.  

The effect of changes in technology and inputs is path dependent, which means that we can build 
a similar index by multiplying the top and bottom in (2.8) by F1(x0) instead of using F0(x1) as before to 
obtain 

 𝑦𝑦1
𝑦𝑦0

= 𝐸𝐸1
𝐸𝐸0

× 𝐹𝐹1(𝑥𝑥0)
𝐹𝐹0(𝑥𝑥0)

× 𝐹𝐹1(𝑥𝑥1)
𝐹𝐹1(𝑥𝑥0)

. (2.10) 

In this case, the shift in the frontier is measured with respect to country i’s coordinates in the production 
space in the initial period, and the last term represents movement along the frontier in the final period. 
The only time (2.9) and (2.10) are equal is when technological change is Hicks neutral, in which case the 
shift in the frontier is independent of the value of the input–labor ratio. To avoid the problem of path 
dependence, Caves, Christensen, and Diewert (1982) adopted the “Fisher ideal” decomposition based on 
the geometric averages of the two measures of the effects of technological change and capital 
accumulation multiplying the top and bottom of (2.9) by [F1(x0) F0(x1)]1/2: 

 𝑦𝑦1
𝑦𝑦0

= 𝐸𝐸1
𝐸𝐸0

× �𝐹𝐹1(𝑥𝑥1)
𝐹𝐹0(𝑥𝑥1)

× 𝐹𝐹1(𝑥𝑥0)
𝐹𝐹0(𝑥𝑥0)

�
1/2

× �𝐹𝐹0(𝑥𝑥1)
𝐹𝐹0(𝑥𝑥0)

× 𝐹𝐹1(𝑥𝑥1)
𝐹𝐹1(𝑥𝑥0)

�
1/2

  (2.11) 
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This approach has the advantage of imposing minimum restrictions on the production structure. On the 
other hand, because of its deterministic character, it is not possible to evaluate the precision of the 
predicted efficiency levels if inputs and outputs are subject to stochastic variation. As the method 
constructs the production frontier based on efficient points, it is naturally sensitive to outliers and 
measurement error. 

The Hybrid Approach: Appropriate Technology 
The hybrid approach goes along the lines of neoclassical growth accounting in defining TFP growth as 
the ratio of output and input growth, with the aggregate production function being defined as Cobb–
Douglas with constant returns to scale (CRS). Within this neoclassical framework, it also disentangles 
technical change along the technological frontier from changes in technical efficiency. Starting from 
equation (2.5), we impose the Cobb–Douglas functional form to the generic expression F(x) representing 
potential output: 

 𝑦𝑦𝑖𝑖 = 𝐸𝐸𝑖𝑖 × �𝑇𝑇𝑖𝑖 ∏𝑥𝑥𝑖𝑖𝑖𝑖
𝛼𝛼𝑗𝑗� where 𝐴𝐴𝑖𝑖 = 𝐸𝐸𝑖𝑖 × 𝑇𝑇𝑖𝑖.  (2.12) 

Notice that this hybrid model, unlike neoclassical growth accounting, deals exclusively with the best 
practice technology, not the average practice technology. In other words, the Cobb–Douglas production 
function is a frontier production function where TFP is decomposed into efficiency and available 
technology levels. Using growth-accounting approach (dropping country index) we can express the output 
growth decomposition between period 0 and 1 as 

 𝑦𝑦1
𝑦𝑦0

= 𝐸𝐸1
𝐸𝐸0

× 𝑇𝑇�1
𝑇𝑇0

× ∏�𝑥𝑥𝑗𝑗1
𝑥𝑥𝑗𝑗0
�
𝛼𝛼𝑗𝑗

.  (2.13) 

The expression in (2.13) is known in the growth-accounting literature as the “appropriate technology vs. 
efficiency” output growth decomposition (Basu and Weil 1998; Jerzmanowski 2007; Growiec 2012). This 
specification allows for two determinants of TFP differences: country-specific levels of efficiency and 
country-specific levels of available technology, which is allowed to be factor specific: Ti(x) (Figure 2.1). 

The right panel of Figure 2.1 represents a model of production where all countries have access to 
the same technology represented by the production function y = Axα. In this setting differences in output 
per worker between an efficient country (C2) and an inefficient country (C1) are explained first by TFP 
levels, which result from inefficiency measured as the distance of C1 to the frontier given the level of 
input x1 used. Second, differences are due in part to the level of input x used, so increasing inputs from x1 
to x2 will reduce the difference in output per worker to differences in efficiency only.  

The left panel represents production with appropriate technology. In this case, the true frontier is 
a function of input per worker. For each input–labor combination there is a particular production function 
(A is a function of x). The difference is that the left panel shows an intermediate level of output y1' that C1 
cannot achieve with its present level of inputs. The difference y1' – y1* is due to appropriate technology. 
This means that to achieve productivity levels of C2, C1 can increase efficiency up to a certain point; but 
to catch up with C2, C1 needs to increase input per worker to operate on C2 production function and face 
TFP levels A2 instead of A1. The oxcart can be improved only so much.  
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Figure 2.1 Standard and appropriate technology levels accounting decomposition 

 
Source:  Adapted from Jerzmanowski (2007). 
Note:  Left panel assumes that technology y = Axα is available to all countries and differences are due to input–labor level and 

total factor productivity. Right panel: Technology is a function of input per worker and country 1 cannot access country 
2’s technology.  

The empirical application of the appropriate technology model used in this study implies the 
estimation of the global production frontier for agriculture using a DEA approach and the parameters of 
the Cobb–Douglas function, discussed in the next section. 
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3.  EMPIRICAL MODEL AND IMPLEMENTATION 

Data 
Output and input data to estimate the parameters of the global production function used in this study are 
from the Food and Agriculture Organization of the United Nations (FAO 2014) covering a period of 51 
years from 1961 to 2012. The final database includes 134 countries (Table 3.1), one output (total 
agricultural production), and six inputs (fertilizer; feed; capital used in livestock production, or livestock 
capital; capital used in crop production, or crop capital; agricultural land; and labor). Results and 
discussion in sections 4 and 5 will focus on the period that goes from 1971 to 2012 covering the post-
independence policies, the period of structural adjustment and the accelerated growth of recent years.  

Table 3.1 Countries in data used by FAO to define the global agricultural production technology, 
by region 

Africa south of the Sahara 
Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Republic of the 
Congo, Côte d’Ivoire, Democratic Republic of Congo, Ethiopia (former), Gabon, Gambia, Ghana, Guinea, Guinea-
Bissau, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, 
Rwanda, Senegal, Sierra Leone, Somalia, South Africa, Sudan (former), Swaziland, Togo, Uganda, Tanzania, 
Zambia, Zimbabwe 
Latin America and the Caribbean 
Argentina, Bahamas, Barbados, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, 
Ecuador, El Salvador, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, 
Peru, Suriname, Trinidad and Tobago, Uruguay, Venezuela 

Asia 
Afghanistan, Bangladesh, Bhutan, Cambodia, China, Democratic People’s Republic of Korea, India, Indonesia, 
Japan, Lao People’s Democratic Republic, Malaysia, Mongolia, Myanmar, Nepal, Pakistan, Philippines, Republic 
of Korea, Sri Lanka, Thailand, Vietnam 
North Africa and West Asia 
Algeria, Bahrain, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, 
Syria, Tunisia, Turkey, United Arab Emirates, Yemen 
Europe 
Albania, Austria, Belgium-Luxembourg, Bulgaria, Cyprus, Czechoslovakia (former), Denmark, Finland, France, 
Germany, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, 
Switzerland, United Kingdom, Yugoslavia (former) 
Other 
Australia, Canada, New Zealand, United States of America (USA), USSR (former) 

Source:  Elaborated by authors based on FAO 2014. 
Note:  FAO = Food and Agriculture Organization of the United Nations. 

Output: The value of gross agricultural production expressed in constant 2004–2006 International 
dollars (I$). It includes crop and livestock production. In Nigeria, output available from FAO since 2000 
did not correspond to growth measured at the country level, so output for 2001–2012 was adjusted using 
agricultural gross domestic product (GDP) figures from World Development Indicators (World Bank 
2014). 

Animal Feed: The amount of edible commodities (cereals, bran, oilseeds, oilcakes, fruits, 
vegetables, roots and tubers, pulses, molasses, animal fat, fish, meat meal, whey, milk, and other animal 
products from FAOSTAT food balance sheets) fed to livestock during the reference period. Quantities of 
the different types of feed are transformed into metric tons of maize equivalents using information of 
energy content for each commodity.  

Fertilizer: The quantity of nitrogen, phosphorus, and potassium (N, P, K) in metric tons of plant 
nutrient consumed in agriculture by country and year as used in Fuglie and Rada (2012) available from 
the US Department of Agriculture (USDA 2014). 
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Labor: Total economically active population in agriculture (in thousands) engaged in or seeking 
work in agriculture, hunting, fishing, or forestry, whether as employers, own account workers, salaried 
employees, or unpaid workers. This measure of agricultural labor input, also used in other cross-country 
studies, is an uncorrected measure that does not account for hours worked or labor quality (education, 
age, experience, and so forth). The data on labor are originally from FAO, which currently reports the 
number of economically active adults in agriculture from 1980 onward. For our analysis we used the 
labor data from USDA (2014) that uses annual growth rates from 1961 to 1979 previously reported by 
FAO to derive estimates for 1961–1979, extrapolating backward from FAO’s 1980 figures. Labor figures 
for Nigeria were adjusted following Fuglie and Rada (2012) assuming 2 percent annual growth in 
agricultural labor for subsequent years. 

Land: Expressed in thousands of hectares and includes land under temporary crops (doubled-
cropped areas are counted only once); temporary meadows for mowing or pasture; land under market and 
kitchen gardens; land temporarily fallow (less than five years); and land cultivated with permanent crops 
such as flowering shrubs (coffee), fruit trees, nut trees, and vines; but excludes land under trees grown for 
wood or timber. Pasture land includes land used permanently (five years or more) for herbaceous forage 
crops, either cultivated or growing wild (wild prairie or grazing land). 

Capital stock: We use FAO’s new series of capital stock covering the period 1975–2007 valued 
at 2005 constant prices as the base year, which was developed by multiplying unit prices by the quantity 
of physical assets “in use” compiled from individual countries. The physical assets include assets used in 
the production process covering land development, irrigation works, structures, machinery, and livestock. 
In this study we use gross fixed capital stock, defined as the value, at a point of time, of assets held by the 
farmer with each asset valued at “as new” prices, at the prices for new assets of the same type, regardless 
of the age and actual condition of the assets. We divide capital stock into two components, as follows: 

Crop capital (land developments and equipment): Includes (a) land development—result of 
actions that lead to major improvements in the quantity, quality, or productivity of land or prevent its 
deterioration including (i) on field land, improvement undertaken by farmers (includes work done on a 
field such as making boundaries, irrigation channels, and so forth) and (ii) other activities such as 
irrigation works, soil conservation works, flood control structure, and so forth undertaken by government 
and other local bodies; (b) plantation crops—trees yielding repeated products (including vines and 
shrubs) cultivated for fruits and nuts, for sap and resin, for bark and leaf products, and so forth; and (c) 
machinery and equipment—tractors (with accessories), harvesters and thrashers, and hand tools. 

Livestock capital (livestock fixed asset and inventory): Includes (a) animal stock—stock of cattle 
and buffalo, camels, horses, mules, asses, pigs, goats, sheep, and poultry; (b) structures for livestock—the 
concept includes sheds constructed for housing cows, buffalo, horses, camels, and poultry birds—
structures have been provided for only part of the total stocks that are held by commercial concerns; and 
(c) milking machines. 

As the capital series are available until 2007 we project them to 2012 using values of their 
different components from FAO: machinery, area of permanent crops, and animal stock. 

Efficiency Estimates 
As discussed in Section 2, we use distance functions to measure output-oriented technical efficiency for 
our sample of countries including information on agroecologies for the different countries to account in 
part for resource quality. We do this in two steps. We first estimate distance function pooling all countries 
in our sample to measure the distance of each country to the world frontier in each year. We then group 
countries by agroecology and estimate the distance of all countries to the frontier of their respective 
group. The distance function of a country in the kth group is defined as follows: 

 𝐷𝐷𝑘𝑘(𝑥𝑥,𝑦𝑦) = [𝑠𝑠𝑠𝑠𝑠𝑠{𝜃𝜃: (𝑥𝑥,𝜃𝜃𝜃𝜃) ∈ 𝑆𝑆𝑘𝑘}]−1. (3.1)  
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Technical efficiency with respect to the world metafrontier is 

 𝐷𝐷∗(𝑥𝑥,𝑦𝑦) = [𝑠𝑠𝑠𝑠𝑠𝑠{𝜃𝜃: (𝑥𝑥,𝜃𝜃𝜃𝜃) ∈ 𝑆𝑆∗}]−1. (3.2) 

The metafrontier envelopes the group frontiers, which means that 𝐷𝐷𝑘𝑘(𝑥𝑥,𝑦𝑦) ≥ 𝐷𝐷∗(𝑥𝑥, 𝑦𝑦) for all k. 
Following Rambaldi, Rao, and Dolan (2002), we define the technology gap ratio (TGR) in year t as the 
ratio of the two distances: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 = 𝐷𝐷(𝑥𝑥,𝑦𝑦)∗

𝐷𝐷(𝑥𝑥,𝑦𝑦)𝑘𝑘
≤ 1. (3.3) 

Rearranging terms, we define the distance to the metafrontier as the product of the technology gap 
between group k’s frontier and the metafrontier (TGRk) and distance to the group’s frontier: 

 𝐷𝐷∗(𝑥𝑥,𝑦𝑦) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 × 𝐷𝐷𝑘𝑘(𝑥𝑥,𝑦𝑦). (3.4) 

To estimate the distance function for a particular country i* we solve the following linear programming 
problem: 

 𝐷𝐷(𝑥𝑥𝑖𝑖∗,𝑦𝑦𝑖𝑖∗) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃,𝜆𝜆

𝜃𝜃𝑖𝑖∗ (3.5) 

subject to  

 𝜃𝜃𝑖𝑖∗𝑦𝑦𝑖𝑖∗ ≤ ∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝐼𝐼
𝑖𝑖=1  and 𝑥𝑥𝑖𝑖∗,𝑗𝑗 ≥ ∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗𝐼𝐼

𝑖𝑖=1  for inputs j={1,…J}, 𝜆𝜆𝑖𝑖 ≥ 0. (3.6) 

Table 3.2 presents a summary of efficiencies and TGR of SSA countries for different decades and 
by agroecological zone (AEZ). Definitions of AEZ and SSA country grouping by AEZ can be found in 
the Appendix. On average, technical efficiency of SSA countries has remained around 0.85 between 1971 
and 2012, with a decline during the 1980s and a recovery in recent years. The technology gap of the 
region is 0.90, which means that TFP level at the frontier of the agroecologies where SSA countries 
produce is 10 percent lower than TFP level at the metafrontier.  

Table 3.2 Average efficiency and technology gap ratios for SSA countries by agroecological zone 

  Efficiency    TGR   

 Zone 
1971–
1980 

1981–
1990 

1991–
2000 

2001–
2012 

1971–
1980 

1981–
1990 

1991–
2000 

2001–
2012 

SSA 0.84 0.80 0.81 0.85  0.90 0.89 0.89 0.90 

Temperate—arid, semiarid 0.90 0.86 0.84 0.87  0.80 0.84 0.81 0.75 

Tropical—arid, semiarid, 
subhumid 0.80 0.75 0.78 0.81  0.89 0.89 0.90 0.94 

Tropical—humid 0.88 0.88 0.86 0.91   0.94 0.91 0.90 0.91 
Source:  Author’s estimation. 
Note:  SSA = Africa south of the Sahara; TGR = technology gap ratio. 
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Input Elasticities and the Cobb–Douglas Production Function 
The empirical framework to estimate input elasticities of the Cobb–Douglas production function follows 
Eberhardt and Teal (2013) and builds on a common factor representation of the log-linearized production 
function, allowing to accommodate nonstationarity and correlation across panel members. Borrowing 
notation from Eberhardt and Teal (2013) we represent the model as follows: 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖′𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖 (3.7) 

 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜆𝜆𝑖𝑖′𝑓𝑓𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 (3.8) 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑖𝑖𝑖𝑖 + 𝛿𝛿′𝑖𝑖𝑖𝑖𝑔𝑔𝑗𝑗𝑗𝑗 + 𝜙𝜙𝑖𝑖𝑖𝑖𝑓𝑓𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖  (3.9) 

 𝑓𝑓𝑡𝑡 = 𝜚𝜚′𝑓𝑓𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 and 𝑔𝑔𝑡𝑡 = 𝜅𝜅′𝑔𝑔𝑡𝑡−1 + 𝜖𝜖𝑡𝑡  (3.10) 

The Cobb–Douglas production function (3.7) has observed output (yit) and observed inputs (xit) 
including labor, crop capital stock, livestock capital stock, fertilizer, feed, and agricultural land (all in 
logarithms). The constant term 𝜇𝜇𝑖𝑖𝑖𝑖 is represented by a combination of country-specific effects (αi) and a 
set of common factors ft, which can have different effects across countries (i). The model allows for 
endogeneity, as the input variables xit are driven by a set of common factors gjt and by the subset of 
factors ft influencing output in equations (3.8) and (3.9), which means that some unobserved factors 
driving agricultural production are likely to drive, at least in part, the evolution of the inputs. Finally, 
equation (3.4) indicates that the latent factors are persistent over time, which allows for the setup to 
accommodate nonstationarity in factors (ϱ= 1, κ = 1).  

The parameter of interest is the vector of elasticities β. As in Eberhardt and Teal (2013) we 
consider different models to estimate β that deal with unobserved heterogeneity, cross-section 
dependence, and dependence due to latent common factors. We divide these models into two groups. 
Pooled models assume parameter homogeneity: All countries share the same slope parameters (yit = β'x). 
Within this group we estimate pooled standard ordinary least squares (POLS) in levels and first difference 
(FD-OLS), two-way fixed effects (2FE) including country and year dummy variables, and the Pesaran 
(2006) common correlated effects (CCEP) pooled estimator. Pesaran’s estimator uses the cross-section 
averages of the observed variables (for example, averages of y and x) as proxies for the latent factors ft, 
assuming that unobserved factors that influence productivity are common to all countries. This model is 
extended as in Eberhardt and Teal (2013) using different weight-matrices to calculate the cross-section 
averages: CCEPn uses averages of contiguous neighbors for each country; in CCEPd, cross-section 
averages are calculated using the inverse of the population-weighted distance between countries; in 
CCEPc, weights for every country pair are constructed based on the share of cultivated land within each 
of 12 climatic zones as defined in Jaffe (1986) and used in Eberhardt and Teal (2013), a more detailed 
climatic classification than the four AEZs defined here to control for natural resource quality in the 
efficiency comparisons. Finally CCEPoc (not included in Eberhardt and Teal 2013) uses weights to 
measure distance between countries by comparing agricultural output composition (shares of different 
commodities in total output).  

The second group of models allows for heterogeneous slopes (yit = βi'x) and is able to 
accommodate the type of endogeneity presented in the original model (equations 3.1 to 3.4) to arrive at 
consistent estimates for common slope coefficients calculated as the mean of heterogeneous βi. 
Simulations studies (for example, Coakley, Fuertes, and Smith 2006) show that results from these models 
are robust even when the cross-section dimension is small, when variables are nonstationary, and in the 
presence of weak unobserved common factors (spatial spillovers). Within this group we estimate the 
Pesaran and Smith (1995) mean group (MG), and heterogeneous versions of the different CCE estimators, 
including the heterogenous version of the common correlated effects or mean group common correlated 
effects (CMG) and its extensions using different weights: contiguous neighbors (CMGn), distance 

11 



 

(CMGd), climate (CMGc), and output composition (CMGoc). We also include Eberhardt and Bond 
(2009) augmented mean group (AMG) estimator.  

The MG estimator assumes away cross-section dependence (λi = 0) and estimates separately 
individual country regressions. Estimated coefficients at the country level are then averaged across panel 
members to obtain β. The heterogeneous version of the CCE models estimate individual country 
regressions augmented by cross-section averages of dependent and independent variables using the data 
for the entire panel. The estimated βi coefficients are averaged across panel members using different 
weights. Finally, the AMG estimator is implemented in three steps: (1) a pooled regression model 
augmented with year dummies is estimated by FD-OLS and the coefficient on the year when dummies are 
collected (common dynamic process); (2) the country-specific regression model is then augmented with 
estimates from step 1; and (3) country-specific parameters are averaged across the panel (see Eberhardt 
2012 for details on the empirical aspects of estimating heterogeneous models using STATA).  

Results 
First- (Maddala and Wu 1999, not reported) and second-generation (Pesaran 2007) panel unit root tests 
applied to output and input data used in this study suggest that nonstationarity cannot be ruled out in this 
dataset. There is also strong evidence of the presence of cross-section dependence within the full sample 
dataset, based on the Pesaran (2004) cross-section dependence test (CD test). Eberhardt and Teal (2012) 
arrived to the same conclusions using a dataset similar to the one used in this study. It is then important to 
evaluate different models according to how they deal with nonstationarity and cross-section dependence. 
Results of the different estimated models are presented in Table 3.3 (pooled models) and Table 3.4 
(heterogeneous models).  

Table 3.3 Pooled regressions 

  POLS 
Two-way 

FE FD-OLS CCEP CCEPn CCEPd CCEPc CCEPoc 

 Variable (1) (2) (3) (4) (5) (6) (7) (8) 

Labor –0.0555*** 0.174*** –0.0593 0.107 0.0138 0.134 –0.120 0.0723 

 (0.00304) (0.0176) (0.0997) (0.151) (0.156) (0.132) (0.110) (0.131) 

Crop capital 0.265*** 0.179*** 0.283*** 0.364*** 0.237*** 0.323*** 0.194*** 0.362*** 

 (0.00867) (0.00968) (0.0635) (0.0614) (0.0670) (0.0542) (0.0434) (0.0673) 
Livestock 
capital 0.219*** 0.280*** 0.235*** 0.328*** 0.190*** 0.335*** 0.347*** 0.357*** 

 (0.00733) (0.0101) (0.0565) (0.0680) (0.0679) (0.0630) (0.0923) (0.0757) 

Fertilizer 0.111*** 0.0513*** 0.00454 0.0136*** 0.0202** 0.0140*** 0.0124*** 0.0129** 

 (0.00498) (0.00259) (0.00277) (0.00426) (0.00913) (0.00416) (0.00427) (0.00543) 

Land 2.52e–05 0.515*** 0.344*** 0.288** 0.232 0.334*** 0.253** 0.253** 

 (0.00571) (0.0200) (0.0829) (0.130) (0.144) (0.117) (0.108) (0.117) 

Feed 0.174*** 0.118*** 0.0922*** 0.109*** 0.154*** 0.1000*** 0.0951*** 0.104*** 

 (0.00795) (0.00478) (0.0246) (0.0263) (0.0457) (0.0277) (0.0319) (0.0272) 

Constant 6.994***   –2.43*** –2.426** 1.937 4.489*** 0.208 

  (0.0456)     (4.24e–06) (1.127) (1.337) (0.856) (1.140) 
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Table 3.3 Continued 

  POLS 
Two-way 

FE FD-OLS CCEP CCEPn CCEPd CCEPc CCEPoc 
 Variable (1) (2) (3) (4) (5) (6) (7) (8) 
Implied labor 
coefficient 0.175 0.031 –0.018 0.003 0.181 0.028 –0.022 –0.016 

Returns  DRS IRS DRS CRS CRS CRS CRS CRS 
RMSE 0.412 0.154 0.079 0.071 0.088 0.071 0.072 0.072 
Stationarity a I(1) I(1) I(0) I(0) I(0) I(0) I(0) I(0) 

Mean ρij b 0.416 0.388 0.124 0.173 0.131 0.159 0.143 0.152 
CD(p) c 0.28 0.19 –0.99 –2.92 1.47 –0.08 –2.43 –2.15 
CD p value  0.783 0.852 0.323 0.003 0.141 0.935 0.015 0.031 

Observations 6,834 6,834 6,700 6,834 6,834 6,834 6,834 6,834 

R-squared 0.917 0.777 0.465 0.976 0.963 0.976 0.975 0.975 
Number of 
countries 134 134 134 134 134 134 134 134 

Source:  Author’s estimation. 
Notes:   CCEP = Pesaran common correlated effects; CCEPn= common correlated effects where cross-section averages are 

averages of contiguous neighbors for each country; CCEPd= common correlated effects where cross-section averages 
are calculated using the inverse of the population-weighted distance between countries; CCEPc, common correlated 
effects where weights for every country pair are constructed based on the share of cultivated land within each of 12 
climatic zones; CCEPoc= common correlated effects where weights for every country pair are constructed based on the 
share of different commodities in total output; MG= Pesaran’s mean group; CMG= heterogenous version of the common 
correlated effects or mean group common correlated effects and its extensions using different weights: contiguous 
neighbors (CMGn), distance (CMGd), climate (CMGc), and output composition (CMGoc); AMG=  Eberhardt and Bond 
(2009) augmented mean group estimator ; CD = Pesaran cross-section dependence test for panels ; CRS = constant 
returns to scale; DRS = decreasing returns to scale; FE = fixed effects; IRS = increasing returns to scale ; RMSE = root-
mean-squared error. a. Pesaran (2007) CIPS test results: I(0) stationary, I(1) nonstationary. b. Mean absolute correlation 
coefficient. c. Pesaran CD test, H0: no cross-section dependence. Robust standard errors are in parentheses. *** p < 0.01, 
** p < 0.05, * p < 0.1. Dependent variable is log output per worker in all models except for the transformation in (2) (see 
Coakley et al. 2006) and in (3), which is the model in first differences.  

Table 3.4 Mean group type estimations 

  MG CMG CMGn CMGd CMGc CMGoc AMG 
 Variable (9) (10) (11) (12) (13) (14) (15) 
Labor –0.0134 0.135 0.0674 0.0359 0.0722 0.0286 0.0953 

 (0.128) (0.133) (0.129) (0.128) (0.132) (0.127) (0.123) 
Crop capital 0.147** 0.159*** 0.183*** 0.147*** 0.141*** 0.164*** 0.194*** 

 (0.0598) (0.0498) (0.0581) (0.0520) (0.0491) (0.0520) (0.0626) 
Livestock capital 0.205*** 0.207*** 0.182*** 0.201*** 0.193*** 0.206*** 0.232*** 

 (0.0303) (0.0283) (0.0298) (0.0297) (0.0305) (0.0276) (0.0320) 
Fertilizer 0.0207*** 0.0180*** 0.0216*** 0.0187*** 0.0153*** 0.0196*** 0.0261*** 

 (0.00546) (0.00562) (0.00513) (0.00521) (0.00471) (0.00521) (0.00566) 
Land 0.263*** 0.262*** 0.243*** 0.221*** 0.290*** 0.267*** 0.231*** 

 (0.0857) (0.0896) (0.0768) (0.0827) (0.0895) (0.0943) (0.0864) 
Feed 0.164*** 0.182*** 0.206*** 0.188*** 0.182*** 0.189*** 0.167*** 

 (0.0172) (0.0178) (0.0186) (0.0172) (0.0181) (0.0177) (0.0175) 
Constant 6.922*** –1.237 0.252 1.768 2.852 –7.476** 6.118*** 
  (0.975) (3.706) (1.361) (3.566) (2.327) (3.545) (0.915) 
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Table 3.4 Continued 

  MG CMG CMGn CMGd CMGc CMGoc AMG 
 Variable (9) (10) (11) (12) (13) (14) (15) 
Implied labor  
coefficient 0.19 0.31 0.232 0.26 0.25 0.183 0.25 

Returns  CRS CRS CRS CRS CRS CRS CRS 
RMSE 0.064 0.051 0.052 0.051 0.050 0.051 0.064 
Stationarity a I(0) I(0) I(0) I(0) I(0) I(0) I(0) 
Mean ρij b 0.132 0.132 0.124 0.129 0.124 0.127 0.133 
CD(p) c 5.41 –1.08 0.1 1.94 –2.31 –1.04 0.77 
CD p value  0.000 0.282 0.921 0.053 0.021 0.297 0.440 
Observations 6,834 6,834 6,834 6,834 6,834 6,834 6,834 
Number of countries 134 134 134 134 134 134 134 

Source:  Author’s estimation. 
Notes:  MG= Pesaran’s mean group; CMG = heterogeneous version of the common correlated effects or mean group common 

correlated effects and its extensions using different weights: contiguous neighbors (CMGn), distance (CMGd), climate 
(CMGc), and output composition (CMGoc); AMG = Eberhardt and Bond (2009) augmented mean group estimator; CRS 
= constant returns to scale. a. Pesaran (2007) CIPS test results: I(0) stationary, I(1) nonstationary. b. Mean Absolute 
Correlation coefficient. c. Pesaran CD test, H0: no cross-section dependence. Standard errors in parentheses; *** p < 
0.01, ** p < 0.05, * p < 0.1. Dependent variable is log output per worker in all models. 

Looking first at diagnostic tests of nonstationarity and cross-section dependence of residuals, we 
observe that the pooled OLS and FE models cannot rule out nonstationarity, but all other models show 
residuals that reject the null hypothesis of nonstationarity using the Pesaran CD test. The presence of 
nonstationary residuals reduces the precision of parameter estimates, and t-statistics are invalid, which 
makes the POLS and FE models unreliable.  

As in Eberhardt and Teal (2013), the CD test for cross-section dependence yields very mixed 
results. The models that do not reject the null hypothesis of no cross-section dependence are FD-OLS and 
the pooled distance (CCEPd) and neighbor (CCEPn) CCE among the pooled models, and four of the MG 
models (CMG, CMGn, CMGoc and the AMG model). Pooled OLS and FE show relatively high mean 
absolute residual correlation (0.4) compared with correlation in other models ranging from 0.12 to 0.17. 
However, the CD test does not reject the null of cross-section independence in these models. Two of the 
15 estimated models emphatically reject CRS: POLS and two-way FE. 

We conclude from our results that heterogeneous parameter models seem to perform better than 
the traditional pooled models, with the neighbor and the crop share CMG showing the best performance. 
These models reject nonstationarity, show no evidence of cross-section dependence, and do not reject 
CRS. Table 3.5 presents results for these two models and the best-performing pooled model (neighbor 
CCE) compared with estimates of the same models with CRS imposed. The CMG output composition 
model (CMGoc) performs better than all other models when CRS are imposed with no significant 
changes in coefficient values. In contrast, the coefficient for labor in the CMGn model doubles, and other 
coefficients also change significantly when CRS are imposed 
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Table 3.5 Best-performing models, unrestricted and with CRS imposed  
  CCEPn (5)   CMGn (11)   CMGoc (14)   

 Model Unrestricted 
CRS 

imposed Unrestricted 
CRS 

imposed Unrestricted 
CRS 

imposed 
Labor 0.0138  0.0674  0.0286  

 (0.156)  (0.129)  (0.127)  
Crop capital 0.237*** 0.236*** 0.183*** 0.239*** 0.164*** 0.179*** 

 (0.0670) (0.0631) (0.0581) (0.0537) (0.0520) (0.0463) 
Livestock capital 0.190*** 0.188*** 0.182*** 0.196*** 0.206*** 0.227*** 

 (0.0679) (0.0682) (0.0298) (0.0307) (0.0276) (0.0276) 
Fertilizer 0.0202** 0.0204** 0.0216*** 0.0243*** 0.0196*** 0.0201*** 

 (0.00913) (0.00913) (0.00513) (0.00542) (0.00521) (0.00540) 
Land 0.232 0.222** 0.243*** 0.168** 0.267*** 0.239*** 

 (0.144) (0.0906) (0.0768) (0.0734) (0.0943) (0.0585) 
Feed 0.154*** 0.154*** 0.206*** 0.234*** 0.189*** 0.184*** 

 (0.0457) (0.0455) (0.0186) (0.0191) (0.0177) (0.0181) 
Constant –2.426** –2.341*** 0.252 4.274*** –7.476** 3.198*** 

 (1.127) (0.600) (1.361) (0.306) (3.545) (0.592) 
Implied labor  
coefficient 0.181 0.180 0.232 0.139 0.183 0.150 

Returns  CRS — CRS — CRS — 
RMSE 0.088 0.088 0.052 0.057 0.051 0.054 
Stationarity a I(0) I(0) I(0) I(0) I(0) I(0) 
Mean ρij b 0.131 0.129 0.124 0.125 0.127 0.131 
CD(p) c 1.47 1.33 0.1 0.28 –1.04 –0.41 
CD p value  0.141 0.184 0.921 0.776 0.297 0.682 

Observations 6,834 6,834 6,834 6,834 6,834 6,834 

Number of countries 134 134 134 134 134 134 
Source:  Author’s estimation. 
Notes:  CRS =constant returns to scale; CCEPn = common correlated effects, contiguous neighbors; CMGn mean group 

common correlated effects contiguous neighbors = ; eCMGoc = mean group common correlated effects output 
composition; RMSE = root-mean-square error. CD = Pesaran cross-section dependence test. a. Pesaran (2007) CIPS test 
results: I(0) stationary, I(1) nonstationary. b. Mean absolute correlation coefficient. c. Pesaran CD test, H0: no cross-
section dependence. Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1. Dependent variable is log 
output per worker in all models.  
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4.  TOTAL FACTOR PRODUCTIVITY GROWTH AND PERFORMANCE OF 
AGRICULTURE, 1971–2012 

Aggregated Results Using a Simple Average of 38 SSA Countries 
Results of the growth decomposition analysis for a sample of 38 Sub-Saharan African countries1 shows 
that annual growth per worker for the period 1971–2012 was 0.7 percent, or equivalently, that agricultural 
output per worker in SSA was 30 percent higher in 2012 than its level in 1971. Two periods with 
contrasting results can be distinguished in Figure 4.1 and Table 4.1. A first period of poor performance 
and decline stretches from the beginning of the period to the mid-1980s, during which growth in SSA was 
close to zero: −0.4 and 0.2 percent in 1971–1980 and 1981–1990, respectively. The period of recovery 
and improved performance starts in the mid-1990s and extends to 2012, the last year for which 
information is available. During this period, output per worker grows at an annual rate of 1.8 percent, 
with 0.6 percent growth in 1991–2001 and accelerating to 2.0 percent in the last decade (2001–2012). 

Figure 4.1 Evolution of levels and growth rates of output per worker and its components, 1971–
2011 

 
Source:  Author’s calculations. 
Note:  TFP = total factor productivity; TGR = technology gap ratio. 
  

1 South Africa and Mauritius are not included. 
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Table 4.1 Growth rates of output and inputs per worker and TFP and its components, different 
periods 

 Variable 1971–
1980 

1981–
1990 

1991–
2000 

2001–
2012 

1971–
2012 

2001–
2006 

2006–
2012 

Growth rate 
1995–2012 

Contribution 
to growth a 

Output –0.4 0.2 0.6 2.00 0.7 1.9 2.1 1.8 100 

Efficiency –1.2 0.1 0.4 0.7 0.00 0.7 0.6 0.7 41 
Technical 
change 0.8 0.4 0.3 1.0 0.6 0.8 1.2 0.8 43 

TFP –0.5 0.5 0.7 1.7 0.7 1.6 1.8 1.5 84 

Inputs 0.1 –0.3 –0.1 0.3 0.0 0.3 0.2 0.3 16 

 Land –1.5 –1.9 –1.7 –1.3 –1.6 –1.2 –1.3 –1.3 –220 
 Crop 
capital –0.2 –0.7 –0.4 –0.7 –0.5 –0.7 –0.6 –0.5 –64 

 Livestock 
capital 0.3 –0.4 –0.4 0.8 0.1 0.4 1.2 0.6 98 

 Fertilizer 3.0 0.7 –0.5 0.3 0.9 0.5 0.1 –0.3 –4 

 Feed 1.2 1.2 2.1 2.1 1.7 2.9 1.3 2.4 289 

 Labor b 1.8 2.2 2.0 1.8 1.9 1.8 1.8 1.9 n.a. 

Source:  Author’s estimation. 
Notes:  TFP = total factor productivity. a. For inputs, contribution is to growth in total inputs. b. growth in the number of 

economically active people in agriculture. 

The decomposition of growth in output per worker into inputs, efficiency, and technical change 
shows that 84 percent of growth in output per worker is explained by TFP growth, with inputs explaining 
the remaining 16 percent (Table 4.1). Both increased efficiency and technical change have contributed to 
TFP growth in the last 15 years. The region started catching up to the world frontier in 1995 after falling 
behind from 1971 to 1990. The period of improved performance has also seen accelerated growth of the 
technological frontier (1.0 percent yearly, compared with 0.3–0.4 percent in 1981–2000). Notice that in 
2012 the region is still below the 1971 levels of efficiency and that growth in efficiency has remained 
below 0.7 percent during the period of improved performance. Inputs have also contributed to output 
growth since 1995, at an average rate of 0.3 percent. However, with low growth in inputs and with labor 
still growing at average rates of 1.9 percent between 1995 and 2012, the level of input per worker in the 
region is almost the same as in 1971. 

Among inputs, we observe that rapid population growth has resulted in negative growth of 
agricultural land per worker. We also observe a sharp decline in fertilizer use from 3.0 percent growth in 
the 1970s to negative growth in the 1990s as most countries adjust their economies. Positive growth in 
fertilizer per worker is observed in the twenty-first century, although growth is low and negative on 
average between 1995 and 2012, the period of improved performance in the region. Capital used for 
livestock production also grew at negative rates during the 1980s and 1990s but started recovering in the 
twenty-first century. On the other hand, capital in crop production shows negative growth rates during the 
whole period of analysis (–0.5 percent). This means that on average SSA is using at present 20 percent 
less capital per worker in agricultural production than it did in 1971. Overall input growth after 1995 was 
driven by growth in feed and livestock capital. Modest growth in fertilizer and decreases in crop capital 
and agricultural land per worker indicate that the process of intensification in crop production is driven by 
labor use, with little contribution of inputs and capital. 

Figure 4.2 plots average annual growth rates of the four productivity components against output 
per worker in 1985. Panel A shows a negative relationship between the level of output per worker in 1985 
and growth during 1995–2012. However, the coefficient of the trend line is not significant as the result of 
two different forces explaining growth. First, the negative and significant relationship between the level 
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of output per worker in 1985 and efficiency growth (panel B) implies that growth after 1995 has benefited 
low-labor-productivity (poorer) countries. On the other hand, technical change and increased use of inputs 
is positively related to higher initial levels of output per worker. This can be seen in Panels C and D of 
Figure 4.2. The positive slope in Panel C indicates that relatively richer countries (higher labor 
productivity) in 1985 tend to benefit more from technological progress than those countries with low 
output per worker in 1985, while Panel D suggests that increases in the use of capital and inputs have 
done little to reduce the gap in labor productivity between countries. 

Figure 4.2 Average annual growth rate between 1995 and 2011 in output per worker, efficiency, 
technology, and inputs against output per worker in 1985 

 
Source:  Author’s estimation. 

Results at the Country Level  
The performance and the contribution of different countries to total TFP growth in SSA vary greatly. 
Figure 4.3 shows levels of output per worker in 1995 and 2012 relative to 1985, and Figure 4.4 presents 
the contribution of different countries to total growth of output per worker between 1995 and 2012. For 
one-fourth of the countries in our sample, output per worker in 2012 was lower than in 1985. Half of the 
countries show output per worker in 2012 that was less than 30 percent higher than in 1985 (less than 1.0 
percent annual growth). The 10 best-performing countries—Nigeria, Sierra Leone, Cameroon, Gabon, 
Angola, Mali, Malawi, Sudan, Ghana, and Mozambique—on average doubled output per worker between 
1985 and 2012. Note that except for Nigeria and Ghana, two countries that show significant growth 
between 1985 and 1995, most of the observed growth occurred after 1995. 
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Figure 4.3 Output per worker in 1995 and 2011 relative to 1985 levels (1985 = 1) 

 
Source:  Author’s estimation. 

Figure 4.4 presents average growth rates and the contribution of different countries to growth in 
output per worker in SSA between 1995 and 2012 calculated as the growth rate of each country weighted 
by the country’s share in SSA’s agricultural labor. Five countries—Nigeria, Sudan, Ethiopia, Cameroon, 
and Côte d’Ivoire—explain two-thirds of the total growth. If we extend the list to 12 countries by 
including Tanzania, Ghana, Malawi, Kenya, Mozambique, Angola, and Mali, we explain 90 percent of 
total growth in output per worker in SSA.  
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Figure 4.4 Average growth rates and contribution of different countries to total growtha in output 
per worker, 1995–2012 

 
Source:  Author’s estimation. 
Note:  a. Cumulative contribution of countries. For example, Nigeria contributes 44% of total SSA growth, and Sudan’s 

contribution is 8%, so the contribution of Nigeria and Sudan is 52%. 

Table 4.2 looks at agricultural performance of individual countries presenting growth rates of 
output per worker, aggregated inputs, and TFP and its components for the period 1995–2012 with 
countries sorted by growth rate in output per worker. Table 4.3 complements information presented in 
Table 4.2 by showing the contribution of inputs and TFP and its components to total growth in output per 
worker. Results show that output per worker in the best-performing countries (countries with average 
growth greater than 1 percent) grew at an average rate of 2.8 with most of this growth explained by 
growth in TFP: 2.2 percent yearly growth (Table 4.2) or 78 percent of total growth in output per worker 
(Table 4.3), with a higher contribution of efficiency (43 percent) than of technical change (36 percent).  

Total input per worker increased at only 0.6 percent for the group of best performers while 
showing negative growth on average for poor performers (countries where output per worker grew by less 
than 1 percent yearly). Among the group of 24 best-performing countries, only 7 countries (Malawi, 
Swaziland, Gabon, Sierra Leone, Guinea, Mali, and Benin) show growth rates in input per worker greater 
than 1.0 percent. Most countries with poor growth performance show negative growth in inputs per 
worker and in many cases a reduction in efficiency. 

The slow growth in inputs per worker observed between 1995 and 2012 (last five columns of 
Table 4.2) is the result of a reduction in agricultural land and crop capital per worker, an increase in the 
use of fertilizer and livestock capital, and fast growth in the use of feed per worker. On average for the 
region, feed per worker increased at an annual rate of 2.3 percent, and fertilizer and livestock capital 
increased at 1.0 and 0.6 percent, respectively. Fast-growing countries increased feed per worker at a 
yearly rate of 3.5 percent and fertilizer at 0.7 percent, compared with 0.6 percent and –1.0 percent, 
respectively, in countries growing at 1 percent or less. Capital for crop production remained stagnated in 
rapidly growing countries, increasing proportionally to the labor force (0.0 percent annually) while 
growth was negative on average for slowly growing countries.  
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Table 4.2 Yearly growth rate of output and input per worker, productivity, and its components, 1995–2012, in percentage 

 
Output and input per worker,  
TFP, and components Inputs 

 Country Output Inputs TFP Efficiency Technology Feed Fertilizer 
Livestock 

capital 
Crop 

capital 
Agricultural 

land 

Best performers 2.8 0.6 2.2 1.2 1.0  3.5 0.7 1.1 0.0 –1.1 
Malawi 4.9 2.5 2.3 0.3 2.0  7.2 7.6 4.8 0.4 –0.3 

Sierra Leone 4.3 1.6 2.7 1.0 1.7  2.6 –11.0 3.9 3.3 –0.5 

Mozambique 4.3 0.0 4.2 3.7 0.6  3.1 13.1 –0.3 –1.2 –2.0 

Cameroon 4.1 0.9 3.2 0.8 2.3  6.0 0.7 –0.4 0.0 –0.2 

Angola 3.6 –0.2 3.9 3.2 0.7  6.8 –4.5 –0.5 –3.2 –2.7 

Nigeria 3.6 0.3 3.3 2.8 0.5  1.1 4.5 1.9 –0.2 –1.6 

Rwanda 3.5 0.1 3.4 2.8 0.6  5.6 –1.1 0.1 –1.5 –2.6 

Congo, Republic of the 3.1 0.2 2.9 2.5 0.4  0.4 –5.1 2.0 –0.3 –0.7 

Benin 3.0 1.1 1.8 2.7 –0.8  7.0 –30.7 1.1 1.2 0.6 

Gabon 2.9 1.7 1.2 0.0 1.1  5.1 3.4 1.6 0.8 0.8 

Guinea-Bissau 2.7 0.6 2.1 –0.4 2.6  0.2 12.4 1.1 1.3 –0.8 

Sudan 2.7 0.6 2.1 0.8 1.3  4.8 0.4 0.5 –0.8 –1.1 

Zambia 2.7 –0.5 3.2 2.6 0.6  –0.6 –3.4 –0.8 1.1 –1.4 

Côte d’Ivoire 2.6 0.8 1.7 0.1 1.6  2.9 –0.5 0.6 0.7 0.3 

Ethiopia 2.5 –0.1 2.6 2.6 0.0  1.3 5.3 0.6 –0.6 –2.1 

Mali 2.4 1.1 1.3 –0.2 1.5  2.0 10.9 1.8 2.6 –1.4 

Tanzania 2.4 0.5 1.9 0.1 1.8  5.8 3.7 0.1 –1.1 –1.6 

Ghana 2.3 0.4 1.9 0.3 1.6  2.4 9.2 0.4 0.1 –1.4 

Central African Republic 2.1 0.6 1.5 1.3 0.2  1.8 3.4 2.1 –0.8 –0.7 

Kenya 1.8 –0.7 2.5 0.4 2.1  0.2 –0.4 –0.2 –0.9 –2.2 

Niger 1.6 –0.7 2.3 1.5 0.8  0.5 –1.6 0.6 –2.4 –1.9 

Swaziland 1.5 2.4 –1.0 –1.7 0.7  12.7 2.4 0.0 0.4 0.3 

Chad 1.4 0.0 1.4 0.7 0.7  0.4 3.1 1.4 0.1 –1.7 

Guinea 1.3 1.1 0.1 0.8 –0.7   3.5 –4.1 4.1 0.3 –1.6 
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Table 4.2 Continued 

 
Output and input per worker,  
TFP, and components Inputs 

 Country Output Inputs TFP Efficiency Technology Feed Fertilizer 
Livestock 

capital 
Crop 

capital 
Agricultural 

land 

Poor performers –0.3 –0.6 0.4 0.0 0.4  0.6 –1.0 –0.2 –1.3 –1.7 
Liberia 1.0 0.0 1.0 1.3 –0.3  6.5 2.1 –0.4 –2.4 –3.0 

Togo 0.9 0.5 0.4 0.0 0.4  4.8 –19.8 2.1 –0.6 –1.0 

Burkina Faso 0.8 –0.2 1.0 1.0 0.0  0.3 1.2 0.8 0.0 –1.8 

Botswana 0.4 –0.9 1.3 1.0 0.3  0.4 6.7 0.1 –3.6 –2.0 

Senegal 0.1 –1.2 1.3 1.1 0.2  –0.9 –4.1 –1.0 –1.1 –2.0 

Somalia 0.1 –1.4 1.5 1.2 0.4  –1.5 –4.6 –1.3 –1.8 –1.7 

Mauritania 0.0 –0.8 0.8 1.4 –0.6  2.8 –2.8 –0.4 –2.9 –2.6 

Gambia 0.0 0.4 –0.5 –1.3 0.8  4.0 4.9 –0.5 1.0 –1.9 

Zimbabwe –0.1 0.5 –0.6 –0.7 0.1  –0.8 –4.1 1.3 1.3 1.0 

Uganda –0.3 –0.1 –0.1 –1.3 1.2  1.3 9.4 0.6 –1.5 –1.6 

Madagascar –1.0 –1.8 0.8 –0.4 1.2  0.7 –5.4 –3.1 –3.0 –2.3 

Namibia –1.0 –0.9 –0.1 –1.0 0.9  –4.9 8.5 0.3 –0.1 –0.8 

Burundi –1.7 –0.6 –1.1 –2.6 1.5  –1.4 –3.1 1.7 –1.2 –1.9 
Congo, Democratic 
Republic of –2.7 –2.0 –0.7 –0.1 –0.6   –2.7 –2.9 –2.8 –2.4 –1.8 

Average 1.7 0.2 1.5 0.7 0.8   2.3 1.0 0.6 –0.3 –1.3 
Source:  Author’s estimation. 
Note:  TFP = total factor productivity. 
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Table 4.3 Contribution of inputs per worker, productivity, and its components to growth in output per worker and contribution of 
individual inputs to aggregated input, 1995–2012, in percentage 

 
Contribution of input per worker, TFP, and  
components to output per worker Contribution to aggregated input 

 Country Output Inputs TFP Efficiency 
Technological 

change Input Feed Fertilizer 
Livestock 

capital 
Crop 

capital 
Agricultural 

land 
Best 
performers 100 22 78 43 36 100 152 39 58 –26 –123 
Malawi 100 52 48 7 41 100 50 6 44 3 –3 

Sierra Leone 100 37 63 23 40 100 30 –15 56 37 –8 

Mozambique 100 1 99 86 13 100 1,813 810 –199 –733 –1,591 

Cameroon 100 23 77 20 57 100 114 2 –11 0 –5 

Angola 100 –6 106 88 19 100 –453 35 42 223 253 

Nigeria 100 8 92 78 14 100 70 31 151 –15 –138 

Rwanda 100 3 97 80 17 100 1060 –24 35 –297 –674 
Congo, Republic 
of the 100 6 94 82 12 100 34 –56 240 –31 –87 

Benin 100 38 62 89 –27 100 111 –67 23 20 13 

Gabon 100 59 41 1 40 100 54 4 21 8 12 

Guinea-Bissau 100 21 79 –15 94 100 7 41 46 41 –35 

Sudan 100 22 78 29 49 100 152 2 22 –27 –48 

Zambia 100 –19 119 97 21 100 22 14 37 –40 68 

Côte d’Ivoire 100 33 67 6 61 100 62 –1 16 15 8 

Ethiopia 100 –6 106 107 –1 100 –156 –70 –88 73 340 

Mali 100 46 54 –10 63 100 33 18 36 42 –30 

Tanzania 100 22 78 5 73 100 198 14 4 –40 –76 

Ghana 100 17 83 13 70 100 113 47 22 6 –88 
Central African 
Republic 100 27 73 61 12 100 58 12 87 –26 –32 

Kenya 100 –40 140 24 117 100 –4 1 5 23 75 

Niger 100 –45 145 93 52 100 –14 4 –20 63 66 

Swaziland 100 166 –66 –118 52 100 92 2 0 3 3 

Chad 100 3 97 48 49 100 150 138 731 32 –952 

Guinea 100 90 10 62 –52 100 55 –7 82 4 –34 
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Table 4.3 Continued  

 
Contribution of input per worker, TFP, and  
components to output per worker Contribution to aggregated input 

 Country Output Inputs TFP Efficiency 
Technological 

change Input Feed Fertilizer 
Livestock 

capital 
Crop 

capital 
Agricultural 

land 
Poor 
performers 100 236 –136 14 –150 100 –87 –20 5 79 123 
Liberia 100 –5 105 130 –26 100 –1436 –52 116 560 912 

Togo 100 58 42 0 42 100 161 –84 91 –22 –46 

Burkina Faso 100 –21 121 124 –4 100 –34 –14 –109 3 254 

Botswana 100 –217 317 246 71 100 –9 –15 –4 74 53 

Senegal 100 –1,070 1,170 988 181 100 14 7 20 17 41 

Somalia 100 –1,464 1,564 1,189 375 100 19 7 21 23 30 

Mauritania 100 1,966 –1,866 –3,385 1,519 100 –60 7 10 64 79 

Gambia 100 –1,030 1,130 2,987 –1,857 100 168 23 –25 43 –108 

Zimbabwe 100 –767 867 1,041 –175 100 –25 –15 55 43 43 

Uganda 100 46 54 496 –441 100 –181 –141 –102 215 309 

Madagascar 100 182 –82 43 –124 100 –7 6 40 30 31 

Namibia 100 87 13 100 –88 100 102 –19 –7 2 22 

Burundi 100 35 65 150 –85 100 43 10 –64 35 76 
Congo, 
Democratic 
Republic of 100 74 26 3 22 100 24 3 31 21 21 

Average 100 9 91 44 46 100 64 17 38 13 –33 
Source:  Author’s estimation. 
Note:  TFP = total factor productivity. 
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We compare patterns of growth between best-performing countries by dividing them into two 
groups. The first group includes countries for which growth is driven mainly by improvements in 
efficiency (yearly efficiency growth between 1995 and 2012 greater than 1 percent), and the second group 
includes countries where growth is driven mainly by input growth and technical change. The efficiency-
driven group includes 10 countries: Mozambique, Angola, Rwanda, Nigeria, Benin, Ethiopia, Zambia, 
Republic of the Congo, Niger, and Central African Republic. The second group includes 14 countries: 
Sierra Leone, Cameroon, Guinea, Sudan, Chad, Kenya, Malawi, Ghana, Côte d’Ivoire, Tanzania, Gabon, 
Mali, Guinea-Bissau, and Swaziland. Average values of growth rates and contribution to growth in output 
and input per worker for these two groups of countries are presented in Table 4.4. 

Table 4.4 Growth decomposition, best-performing countries, in percentage 

 Country 
All best 

performers 
Efficiency 

driven 
Technological change 

driven 
Output per worker 2.8 3.0 2.7 
Inputs 0.6 0.1 1.0 
Total factor productivity (TFP) 2.2 2.9 1.7 
Efficiency 1.2 2.5 0.2 
Technical change 1.0 0.3 1.4 
Contribution to growth in output per 
worker    
Output per worker 100 100 100 
Inputs 22 1 39 
TFP 78 99 61 
Efficiency 43 86 7 
Technical change 36 13 54 
Contribution to growth in aggregated 
input    
Input 100 100 100 
Feed 152 255 79 
Fertilizer 39 69 18 
Livestock capital 58 31 77 
Crop capital –26 –76 11 
Agricultural land –123 –178 -84 

Source:  Author’s estimation. 
Note:  Both groups include countries with growth in output per worker bigger than 1 percent on average. Countries in the 

efficiency-driven growth group are those that increased efficiency by at least 1 percent per year on average: 
Mozambique, Angola, Rwanda, Nigeria, Benin, Ethiopia, Zambia, Republic of the Congo, Niger, and Central African 
Republic. The technical-change-driven group includes best-performing countries not included in the efficiency-driven 
group: Sierra Leone, Cameroon, Guinea, Sudan, Chad, Kenya, Malawi, Ghana, Côte d’Ivoire, Tanzania, Gabon, Mali, 
Guinea-Bissau, and Swaziland. 

The efficiency-driven group and the technology-driven group show similar growth rates in output 
per worker for the analyzed period (3.0 and 2.7 percent, respectively). Despite similar performance 
between groups in terms of growth in output per worker, the composition of this growth is very different. 
For example, only 1 percent of total growth in output per worker in the efficiency-driven group is 
contributed by input growth, while 86 percent of total growth is explained by catching up to the frontier. 
Growth in output per worker in the input-technology group on the other hand is explained by increased 
inputs (39 percent of total growth). This growth in inputs is associated with increases in productivity 
through technical change (54 percent of total growth). The contribution of efficiency in this group is 7 
percent. Most of the increase in inputs in this group is the result of growth in the use of feed and increased 
livestock capital. Countries in this group also increased fertilizer and, in contrast with the efficiency-
driven group, also increased crop capital, although its contribution is small relative to that of other inputs.  
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The different growth patterns in the efficiency-driven and technology-driven countries is better 
visualized in Figure 4.5. In the efficiency-driven group (Figure 4.5A), the output per worker and 
efficiency curves follow almost the same path. In contrast, growth in output per worker in the technical-
change-driven group was driven by increased potential output (technical change) and increased inputs per 
worker, which follow a very similar path (correlation 0.84 compared to –0.38 in the efficiency-driven 
group. 

Figure 4.5 Decomposition in growth of output per worker for groups of best-performing countries 
with different growth patterns, 1995–2012 

 
Source:  Author’s estimation. 
Note:  Both groups include countries with growth in output per worker bigger than 1 percent on average. Countries in the 

efficiency-driven growth group are those that increased efficiency by at least 1 percent per year on average: 
Mozambique, Angola, Rwanda, Nigeria, Benin, Ethiopia, Zambia, Republic of the Congo, Niger, and Central African 
Republic. The technical-change-driven group includes best-performing countries not included in the efficiency-driven 
group: Sierra Leone, Cameroon, Guinea, Sudan, Chad, Kenya, Malawi, Ghana, Côte d’Ivoire, Tanzania, Gabon, Mali, 
Guinea-Bissau, and Swaziland. 

Figure 4.6 offers a partial explanation for the observed growth patterns in the different groups of 
countries by comparing levels of output per worker, efficiency, inputs per worker, and potential TFP. 
There are differences in initial levels of the different variables between the efficiency-driven and 
technical-change-driven groups. The efficiency-driven group produced almost 20 percent less output per 
worker than the technical-change-driven group at the beginning of the period. This difference was 
explained by 20 percent higher efficiency and 10 percent more inputs per worker. On the other hand, the 
efficiency-driven group had a more productive technology, with potential production 10 percent higher 
than that in the technical-change-driven group. During the 1970s and 1980s, the period of poor 
performance of agriculture in the region, countries in the efficiency-driven group saw a drastic reduction 
in efficiency, which means that they fell behind the world’s technological frontier as agriculture in these 
countries couldn’t keep pace with growth in other regions. As Figure 4.6 shows in Panel C, by 1986 the 
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average efficiency for this group of countries was 20 percent lower than its level in 1971. The reaction of 
these countries to this loss in efficiency was to reduce the level of input per worker (possibly a 
consequence of structural adjustment and policy changes), an adjustment that starts precisely in 1986 
(Figure 4.6, Panel B). Ten years later, input per worker in the efficiency-driven group was 15 percent 
lower than in 1971 and has remained at that level until the present time. It is only after this reduction in 
the level of input per worker that growth in efficiency takes off, catching up with the world technological 
frontier and with the efficiency level of the technical-change-driven countries.  

Figure 4.6 Levels of output per worker, input per worker, efficiency, and potential TFP for groups 
of countries with different growth patterns 

 
Source:  Author’s estimation. 
Note:  TFP = total factor productivity. Both groups include countries with growth in output per worker bigger than 1 percent on 

average. Countries in the efficiency-driven growth group are those that increased efficiency by at least 1 percent per year 
on average: Mozambique, Angola, Rwanda, Nigeria, Benin, Ethiopia, Zambia, Republic of the Congo, Niger, and 
Central African Republic. The technical-change-driven group includes best-performing countries not included in the 
efficiency-driven group: Sierra Leone, Cameroon, Guinea, Sudan, Chad, Kenya, Malawi, Ghana, Côte d’Ivoire, 
Tanzania, Gabon, Mali, Guinea-Bissau, and Swaziland. 

In contrast, we do not observe a reduction in efficiency in the technical change-driven countries. 
These countries were able to grow at rates similar to those of countries at the world technological frontier. 
Improved performance in this case is the result of accelerated technical change that started in the mid-
1990s (Figure 4.6, Panel D), which coincides with fast-growing levels of input per worker (Figure 4.6, 
Panel B). In other words, countries in the technical-change-driven group increased potential output per 
worker by increasing levels of input per worker. By 2012, countries in both groups show the same levels 
of efficiency and potential output, with differences in output per worker explained only by the higher 
level of inputs per worker used by countries in the technical-change-driven group 
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Figure 4.7 shows average growth rates of output per worker and its components between 1971 
and 2012, looking for changes in growth speed and in the contribution of inputs and TFP to output growth 
in the efficiency- and technical-change-driven countries. First, we observe that both groups of countries 
still show strong growth in output per worker at the end of the period: 3.1 and 2.9 percent between 2008 
and 2012 in the efficiency- and technical-change-driven groups, respectively. The main difference is that 
the technical-change-driven group shows a stable 1.0 percent growth in input per worker, while this rate 
for the efficiency-driven group is below 0.5 percent and fluctuating close to 0.0 percent. At the same time, 
the speed of technical change has been growing for the technical-change-driven group, reaching 1.5 
percent in 2012, and is close to 0.0 percent in the efficiency-driven group. Note that efficiency growth 
should slow down as countries catch up to the technological frontier, which means that the efficiency-
driven group will need to change to technical-change-driven growth to be able to sustain growth in the 
future.  

Figure 4.7 Average growth rates of output per worker, input per worker, efficiency, and potential 
TFP for groups of countries with different growth patterns 

 
Source:  Author’s estimation. 
Note:  TFP = total factor productivity. Both groups include countries with growth in output per worker bigger than 1 percent on 

average. Countries in the efficiency-driven growth group are those that increased efficiency by at least 1 percent per year 
on average: Mozambique, Angola, Rwanda, Nigeria, Benin, Ethiopia, Zambia, Republic of the Congo, Niger, and 
Central African Republic. The technical-change-driven group includes best-performing countries not included in the 
efficiency-driven group: Sierra Leone, Cameroon, Guinea, Sudan, Chad, Kenya, Malawi, Ghana, Côte d’Ivoire, 
Tanzania, Gabon, Mali, Guinea-Bissau, and Swaziland. 

To conclude, we find great variation in the performance and growth patterns of SSA countries 
after policy and institutional changes of the 1990s. Twenty-four of the 38 countries in our sample have 
increased output per worker at rates higher than 1 percent per year; 8 countries show low growth or 
remained virtually stagnated, growing at rates between 0 and 1 percent, while 6 countries experienced 
negative growth. Improved technical efficiency is the main driver of growth in output per worker for 10 
of the 24 best-performing countries during 1995–2012. Given that the speed of catching up decreases 
when countries reduce the distance to the technological frontier, we expect to observe a slowdown in 
efficiency-driven countries unless they switch to a different growth pattern. We also found that 14 
countries showing relatively strong growth during the period follow a very different growth pattern. 
Growth in these countries is driven by increases in input per worker and technical change and has 
accelerated in recent years.  
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5.  PRODUCTIVITY LEVELS AND FUTURE GROWTH 

Output Decomposition in Levels 
After 15 years of growing at an average rate of 3.3 percent or 1.7 percent per worker, where are SSA 
countries compared with other countries? How productive is agriculture in SSA compared with 
agriculture in other regions, and what explains labor productivity differences between SSA and other 
developing regions? What effort in terms of inputs and TFP is needed to increase labor productivity? In 
this section we discuss possible answers to these questions. 

Figure 5.1 plots levels of total input per worker against output per worker for SSA and other 
countries, grouping countries by quintile of land–labor ratio. For example, Panel A shows land-scarce 
countries or countries with a very low land–labor ratio. Rwanda, Burundi, Uganda, Malawi, Gambia, 
Burkina Faso, and Ethiopia are SSA’s most land-scarce, labor-abundant countries. At the other end of the 
spectrum, countries with a very high land–labor ratio include the Republic of the Congo and Gabon in a 
tropical-humid agroecology and several arid and semiarid countries (Sudan, Namibia, Botswana, Mali, 
Somalia, Mauritania, and Chad).  

The first thing to notice in Figure 5.1 is the very low level of input per worker used by SSA 
countries at all levels of land–labor ratio. In Panel A, all SSA countries use inputs below US$0.6 per 
worker when most countries show values between $0.6 and $4.0. On average, input per worker in other 
countries (not including Korea, the country with the highest level of inputs) is twice the average level of 
SSA countries (0.46 and 0.92 respectively). This difference increases as we move up to countries in 
higher land–labor quintiles. In the second quintile, use of inputs in SSA countries concentrates around 
$0.9 per worker (not including Mauritius), while other countries on average use $5.0 per worker and $2.5 
per worker in Mauritius. Ghana appears as an average SSA country in terms of input use in the second 
quintile, with Liberia, Tanzania, and Senegal on the low end and Nigeria, Benin, and Cameroon on the 
high end of input use. In quintile 3, SSA countries average $1.4 of inputs per worker, while average input 
level in other countries is $6.0. Similarly, SSA countries in quintiles 4 and 5 show average values of $2.6 
per worker (not including South Africa), compared with $15.0 in South Africa and $19.0 in other 
countries. Also notice in quintiles 1 to 3 are what we can describe as “absolute outliers,” or countries with 
extremely low levels of input per worker, even when compared with other SSA countries. These are 
Rwanda, Burundi, and the Democratic Republic of Congo in the first quintile; Liberia in the second 
quintile; Mozambique and Madagascar in the third quintile; and Chad and Republic of the Congo in the 
fourth and fifth quintiles. 

What explains differences in output per worker between countries? Following Jerzmanowski 
(2007) we summarize the contribution of efficiency (E), factor endowments (F), and available technology 
or potential TFP (T) to output differences using the variance decomposition. Aggregating inputs, the 
Cobb–Douglas production function can be expressed as Y = TFP × F, where TFP is equal to TFP = E × T, 
or the product of efficiency and available technology. The variance of log output per worker expressed in 
logs can be decomposed as follows: 

 Var(lnY)= Var(lnT)+Var(lnE)+Var(lnF)+2Cov(T,E)+2Cov(T,F)+2cov(E,F). (5.1) 
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Figure 5.1 Input and output per worker by quintile of land–labor ratio for SSA countries and other countries, average 2009–2011 (log 
scale) 

 
Source:  Author’s calculations. 
Note:  SSA = Africa south of the Sahara; AGO = Angola, BDI = Burundi, BFA = Burkina Faso, BWA = Botswana, CAF = Central African Republic, CIV = Côte d’Ivoire, CMR 

= Cameroon, COG = Republic of the Congo, ETH = Ethiopia, GAB = Gabon, GHA = Ghana, GIN = Guinea, GMB = Gambia, GNB = Guinea-Bissau, KEN = Kenya, 
LBR = Liberia, MDG = Madagascar, MLI = Mali, MOZ = Mozambique, MRT = Mauritania, MUS = Mauritius, MWI = Malawi, NAM = Namibia, NER = Niger, NGA = 
Nigeria, RWA = Rwanda, SDN = Sudan, SEN = Senegal, SLE = Sierra Leone, SOM = Somalia, SWZ = Swaziland, TCD = Chad, TGO = Togo, TZA = Tanzania, UGA = 
Uganda, ZAR = Democratic Republic of Congo, ZMB = Zambia, ZWE = Zimbabwe.  
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Table 5.1 presents the contribution of factors, efficiency, and technology to the variation of 
output per worker in agriculture calculated for SSA countries only and for all countries including SSA 
countries.  

Table 5.1 Contribution of factors, efficiency, and technology to the variation of output per worker 
in agriculture in different periods, between SSA countries only and between all countries including 
SSA countries 

  SSA countries only   All countries  
Values Efficiency Inputs Technology Total  Efficiency Inputs Technology Total 
1981–1990 0.06 0.32 0.05 0.42  0.14 1.52 0.28 1.94 
1991–2000 0.05 0.40 0.07 0.51  0.12 1.75 0.38 2.25 
2000–2011 0.04 0.47 0.08 0.60  0.08 1.95 0.43 2.46 
Composition          
1981–1990 13% 75% 12% 100%  7% 78% 14% 100% 
1991–2000 10% 77% 13% 100%  5% 78% 17% 100% 
2000–2011 7% 79% 14% 100%  3% 79% 17% 100% 

Source:  Author’s calculations. 
Note:  SSA = Africa south of the Sahara. 

Results in Table 5.1 show that differences in labor productivity between countries in 2001–2012 
are explained in all cases mostly by differences in input levels and that these differences increased 
through time. Adding direct and indirect input effects (through technology) we find that inputs explain 
more than 90 percent of labor productivity differences between SSA countries and between all countries 
including SSA. Comparing values in different periods we observe two interesting results: First, the 
contribution of efficiency to differences in labor productivity has decreased with time, which coincides 
with growth patterns in SSA in recent years, when countries that experienced large losses of efficiency 
during the 1980s were able to catch up to efficiency levels of other countries in the region. Second, the 
importance of inputs explaining labor productivity has increased with time, not only because of its direct 
effect but also through its indirect effect, appropriate technology. In other words, differences in labor 
productivity are in part the result of low intensity in the use of inputs per worker but also result from low 
productivity of the mix of inputs used.  

Is technology used by SSA countries less productive than technology used in other countries? Or 
equivalently, is the level of technology (T) or potential TFP affected by the input mix? Figure 5.2 shows 
the distribution of countries in different regions by decile of input per worker. All SSA countries (with the 
exception of South Africa) are in deciles 1–5, and two-thirds are in deciles 1–3 along with the majority of 
Asian countries (South Asia and Asia-Pacific). Most Latin American countries are in deciles 5–8, while 
high-income countries are in deciles 9 and 10. 
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Figure 5.2 Distribution of countries of different regions across deciles of input per worker,  
2008–2012 

. 
Source:  Author’s calculations. 
Note:  LAC = Latin American countries; SSA = Africa south of the Sahara. 

We now compare levels of potential TFP between deciles of input per worker in two periods: 
1971–1975 and 2008–2012 (Figure 5.3). The first thing to notice is that in 1971–1975, differences in 
potential productivity between deciles 1–5 and the rest are small (less than 10 percent). However, if we 
compare potential TFP in 2008–2012, the differences between deciles 1–5 and deciles 6–10 are 
statistically significant. Differences between deciles 6–8 and deciles 9 and 10 are not significant. The 
figures for 2008–2012 suggest an “appropriate technology” or some level of input per worker that results 
in higher productivity levels. Technologies available to countries using low levels of input per worker 
(deciles 1–5) are significantly less productive than those technologies available for countries in deciles 6 
or higher.  

Figure 5.3 Comparison of potential TFP levels by decile of input per worker, 1971–1975 and 2008–
2012 

 
Source:  Author’s calculations. 
Note:  TFP = total factor productivity. 
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The change from no difference in potential TFP between countries using different levels of input 
per worker in 1971–1975 to significant differences at present in Figure 5.3 suggest biased technical 
change occurring between the 1970s and the twenty-first century. The difference in potential TFP by 
decile of input per worker and between periods shows that technical change between 1971–1975 and 
2008–2012 shifted the frontier unevenly, with TFP in deciles 1 to 4 increasing only 23 percent in 37 years 
compared with more than 50 percent for deciles 6–8 and 76 percent for deciles 9 and 10. The largest shift 
of the frontier in 2001–2011 corresponds to the factor mix of high-income countries like Canada, the 
United States, France, Belgium, and the Netherlands. These results suggest that technological divergence 
is taking place in agriculture, increasing the distance between countries with the “right” input mix and 
those producing at very low levels of input per worker (like SSA countries). 

Exercise on Future Growth 
In this section we use the information on global agricultural technology developed in this study to 
determine possible growth paths for SSA countries. We define these paths by the contribution of inputs, 
efficiency, and technical change to growth, and the input mix that will be needed to achieve a specific 
growth target. To do this we compare each SSA country with a reference frontier country. The reference 
country is selected from the same land–labor quintile and from the same agroecological zone as the SSA 
country being analyzed. All SSA countries are then compared with their respective reference countries to 
determine the relative growth of inputs and productivity required by each SSA country to converge to the 
same levels of productivity and inputs and the same input mix of the reference country. Note that the goal 
of this exercise is not to recommend specific productivity or input growth targets but (a) to look at 
differences in labor productivity between SSA countries and other developing countries with similar 
characteristics, and (b) to see how TFP and the use of inputs contribute to explain those differences.  

Table 5.2 shows the extent of the gap in labor productivity, TFP, and input use between SSA 
countries and countries with similar agroecologies and land–labor ratios. Labor productivity in SSA is 
only 16 percent of that in reference countries, while the level of input per worker is 34 percent and TFP is 
48 percent of productivity in reference countries. Notice that the product of the relative levels of TFP and 
inputs per worker (0.48 × 0.34) equals the relative level of output per worker (0.16). On the input side, 
fertilizer per worker is only 2 percent of the reference value, while crop capital is 14 percent, feed is 7 
percent, and livestock capital is 43 percent. The differences in agricultural land per worker are small 
because reference countries were chosen to be in the same decile of land per worker as the SSA country 
being compared. Countries with low land–labor ratios (quintiles 1 and 2 in Table 5.2) are closer to their 
references than countries with high land–labor ratios, as labor productivity is 20–23 percent of that in the 
reference country, compared with only 11–12 percent in quintiles 3 to 5. Low land–labor countries show 
higher TFP and higher input per worker relative to reference countries than land-abundant countries.  

We use information in Table 5.2 to calculate the growth rate of inputs, technology, and efficiency 
needed by each country to increase output per worker at a yearly rate of 3.0 percent if countries were to 
converge to the input-productivity structure of the reference countries. Table 5.3 summarizes results of 
the projections; Figure 5.4 compares projected growth rates for the region with average growth rates for 
the period 1995–2012. To increase output per worker at 3.0 percent, TFP will need to increase at a yearly 
rate of 1.2 percent while inputs per worker will need to increase at 1.8 percent per year. Most of projected 
growth in TFP will need to come from technical change or increased potential output (0.9 percent), while 
efficiency gains could contribute on average with 0.3 percent per year. To achieve 1.8 percent growth in 
total inputs, fertilizer per worker will need to increase at an average rate of 6.4 percent, feed at 4.5 
percent, crop capital at 3.2 percent, and livestock capital at 1.4 percent. This growth in TFP and inputs 
should result in 3.0 percent growth in output per worker and in 2.7 percent growth in land productivity 
(last column in Table 5.3). Figure 5.4 shows that the projected TFP growth of 1.5 percent is not far from 
the 1.2 percent growth observed between 1995 and 2012. The major difference is in input growth, which 
was only 0.3 percent in recent years and needs to increase to 1.8 percent, with substantial increases 
needed in fertilizer, feed, and crop capital if the region is to catch up to levels of output per worker in the 
reference countries. 

33 



 

Table 5.2 Average levels of output and inputs per worker and productivity relative to levels of reference countries for SSA countries 
grouped by quintile of land: Labor ratio, in percentage 

Quintile Output TFP 
Potential  

TFP Efficiency Inputs Land Fertilizer 
Crop  

capital Feed 
Livestock 

capital 
Output per 

hectare 
Q1 23 50 62 80 47  103 3 13 16 99 24 
Q2 20 53 60 88 38  112 2 20 6 64 27 
Q3 12 43 53 81 28  107 4 14 4 26 16 
Q4–Q5 11 43 52 83 25  103 1 9 7 18 11 
SSA 16 48 57 84 34  107 2 14 7 43 19 

Source:  Author’s calculations. 
Note:  SSA = Africa south of the Sahara; TFP = total factor productivity. 

Table 5.3 Growth percentage in levels of productivity, efficiency, and inputs needed to increase output per worker at a yearly rate of 3.0 
percent 

 Quintile Output TFP 
Potential  

TFP Efficiency Inputs Land Fertilizer 
Crop  

capital Feed 
Livestock 

capital 
Output per 

hectare 
Q1 3.0 1.4 1.0 0.5 1.6  –0.1 7.1 4.2 3.8 0.0 3.0 
Q2 3.0 1.2 0.9 0.2 1.8  –0.2 7.8 3.0 5.5 0.8 2.4 
Q3 3.0 1.2 0.9 0.3 1.8  –0.1 4.5 2.8 4.7 1.9 2.5 
Q4–Q5 3.0 1.1 0.9 0.3 1.8  0.0 6.3 3.3 3.6 2.3 3.0 
SSA 3.0 1.2 0.9 0.3 1.8  –0.1 6.4 3.2 4.5 1.4 2.7 

Source:  Author’s calculations. 
Note:  SSA = Africa south of the Sahara; TFP = total factor productivity. 
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Figure 5.4 Historical and projected annual growth rates of productivity, efficiency, and inputs 
needed to increase output per worker at a yearly rate of 3.0 percent in SSA 

 
Source:  Author’s calculations. 
Note:  SSA = Africa south of the Sahara; TFP = total factor productivity. 

Table 5.4 presents calculated growth rates of inputs, technology, and efficiency needed by 20 
major agricultural-producing countries in SSA to increase output per worker at a yearly rate of 3.0 
percent. How should we interpret these results? Take Nigeria for an example, where almost all growth is 
projected to come from growth in inputs. This does not mean that there is no need for Nigeria to increase 
TFP in the future but rather that TFP in Nigeria is high compared with that of the reference country 
(almost the same as in the reference country) and that the difference in output per worker is mostly the 
result of low levels of input per worker in Nigeria relative to the reference. The need to increase crop 
capital at 6.1 percent and fertilizer at 4.3 percent means that Nigeria is using significantly less crop capital 
than the reference country and that this difference is bigger than the difference in the use of fertilizer. 
Similarly, Nigeria needs to increase livestock capital by 2.7 percent, but faster growth in feed is needed 
(6.3 percent yearly). If productivity and inputs per worker are related as postulated by the appropriate 
technology hypothesis, we expect to see an increase in potential TFP in Nigeria if inputs increase by these 
amounts, something that is not reflected in Table 5.4, where growth rates result from relative distances 
between Nigeria and the reference country.  

A contrasting country is Ethiopia, where comparisons to a reference country in the same 
agroecology show that potential TFP is low in Ethiopia, so most growth should come from increased 
potential TFP (2.0 percent) with inputs growing at 1.0 percent. When we look at growth rates of 
individual inputs we find that this low projected growth of inputs is the result of negative growth in 
livestock capital (–2.2 percent), relatively low growth in fertilizer (1.6 percent), and high growth in crop 
capital and feed (4.5 and 4.0 percent, respectively). This is not surprising given Ethiopia’s large animal 
stock, mostly specialized in the production of draft animals, which implies low crop capital (machinery), 
low use of feed, and low animal productivity. A possible interpretation of these results is that Ethiopia 
uses inputs efficiently (0.0 percent projected growth in efficiency), but the particular combination of 
inputs and technology used is less productive (lower potential TFP) than the one used in other countries. 
Substitution of machinery for draft animals and a more productive livestock sector, using more feed to 
produce more meat and milk rather than draft animals, should result in a higher potential TFP (a more 
productive technology).  
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Table 5.4 Growth in levels of productivity, efficiency, and inputs needed to increase output per 
worker at a yearly rate of 3.0 percent for major agricultural producers in SSA, in percentage 

Country Output Input TFP Efficiency 
Potential 

TFP 
Crop 

capital Feed Fertilizer 
Livestock 

capital 

Output 
per 

hectare 

Angola 3.0 1.3 1.6 0.2 1.4 2.2 3.0 4.5 1.4 3.8 

Burkina Faso 3.0 0.4 2.6 0.5 2.1 2.9 1.7 1.9 –2.1 3.6 

Cameroon 3.0 2.3 0.7 0.0 0.7 3.9 6.5 8.5 1.4 1.3 
Congo, 
Democratic 
Republic 3.0 2.0 0.9 0.1 0.8 3.6 3.7 6.8 2.6 4.5 

Côte d’Ivoire 3.0 2.1 0.9 0.0 0.8 1.1 5.6 4.5 3.6 3.4 

Ethiopia 3.0 1.0 1.9 0.0 1.9 4.5 4.0 1.6 –2.2 3.7 

Ghana 3.0 1.5 1.5 0.0 1.5 2.6 2.7 5.1 1.8 3.0 

Guinea 3.0 1.4 1.5 0.4 1.2 3.3 3.7 6.8 0.2 2.8 

Kenya 3.0 2.1 0.9 0.0 0.9 3.6 7.4 4.7 0.2 1.8 

Madagascar 3.0 2.1 0.9 0.2 0.7 2.2 6.7 5.8 1.9 1.8 

Malawi 3.0 0.9 2.1 0.0 2.1 3.9 1.0 3.3 –0.2 2.7 

Mali 3.0 2.1 0.9 0.4 0.5 3.7 4.0 5.7 2.9 2.0 

Mozambique 3.0 2.3 0.8 0.1 0.7 3.3 5.1 3.5 3.1 2.0 

Niger 3.0 1.8 1.2 0.2 1.0 2.8 5.4 4.3 1.2 2.4 

Nigeria 3.0 2.9 0.2 0.0 0.2 6.1 6.3 4.3 2.7 2.7 

Senegal 3.0 1.3 1.6 0.5 1.1 2.8 5.1 4.5 –0.7 2.2 

Tanzania 3.0 2.2 0.8 0.1 0.7 3.3 5.3 7.2 2.4 2.3 

Uganda 3.0 1.8 1.1 0.4 0.8 2.6 5.7 5.9 1.0 2.0 

Zambia 3.0 2.2 0.7 0.9 –0.1 5.9 5.7 12.1 –0.2 4.3 

Zimbabwe 3.0 1.8 1.3 0.7 0.6 2.7 4.8 2.2 1.7 2.1 
Average 3.0 1.5 1.5 0.5 0.9 4.2 2.6 3.9 0.9 3.1 

Source:  Author’s calculations. 
Note:  SSA = Africa south of the Sahara; TFP = total factor productivity. 

Between the two extremes of Nigeria and Ethiopia we find Cameroon, Mozambique, Tanzania, 
Zambia, Mali, Madagascar, Côte d’Ivoire, Kenya, and the Democratic Republic of Congo closer to 
Nigeria (a relatively productive technology but low inputs); and Ghana, Guinea, Angola, Senegal, 
Malawi, and Burkina Faso closer to Ethiopia (less-productive technology and input mix). Independently 
of the projected growth rate for inputs and TFP, most SSA countries need to increase crop capital, while 
countries using low levels of input per worker need to significantly increase fertilizer and feed. Even 
though comparisons are made within the same agroecology, some of the differences in potential TFP 
between SSA and reference countries could reflect differences in natural resource potential, particularly in 
the arid, semiarid, and subhumid zone, which still includes significant differences in precipitation. 
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6.  CONCLUSIONS 

We revisited past performance of agriculture in SSA and found that TFP through improved technical 
efficiency and technical change has been the main driver of growth in recent years. Improved efficiency 
benefited mainly poorer, low-labor-productivity countries. On the other hand, we observed that countries 
with higher output and input per worker have benefited much more from technological progress than 
poorer countries, suggesting that technical change has done little to reduce the gap in labor productivity 
between countries.  

A possible explanation of these results can be found in a literature that has emphasized the 
potential dependence of productivity on inputs to explain differences in income levels and the lack of 
convergence in labor productivity. Under this approach, the technological frontier is not the same for all 
countries as some technologies may be more or less productive than others, depending on the country’s 
relative input mix. This is because advanced countries invent technologies that are compatible with their 
own factor mix, but these technologies do not work well with the very different factor mix of poor 
countries. To get a better understanding of the role of inputs on TFP gaps, this study used a growth-
accounting approach to analyze the explanatory power of the appropriate technology hypothesis to 
explain differences in productivity levels between SSA and other countries.  

Our findings show that the levels of input per worker used in SSA’s agriculture at present are 
extremely low and that differences in labor productivity among 134 developing and high-income 
countries are explained mostly by differences in input per worker. Difference in input per worker is also 
the main explanation of difference in output per worker between SSA countries. We also found that the 
importance of inputs in explaining labor productivity has increased with time, not only because of the 
direct effect of inputs but because of a growing gap in the productivity of inputs as the result of low 
productivity of the input mix in poor countries. Countries using the most productive input mix can 
produce 60 percent more output per unit of input than SSA countries. These differences in TFP can 
increase in the future, as we found that technical change shifts the frontier unevenly, with TFP in those 
portions of the frontier at higher levels of input per worker growing much faster than those portions at low 
levels of input per worker (where SSA countries are located). A possible interpretation of the growing 
importance of technology explaining differences in output per worker is that technological divergence is 
taking place in agriculture, increasing the distance between countries with the “right” input mix and 
countries (like SSA countries) producing at very low levels of input per worker.  

Comparisons between SSA countries and similar countries in the same agroecology show that to 
increase output per worker at a yearly rate of 3.0 percent, SSA countries need to increase TFP at an 
annual rate of 1.2 percent, which is similar to that observed between 1995 and 2012, while inputs per 
worker need to increase at 1.8 percent, six times the growth rate of the last 15 years. For inputs per 
worker to grow at 1.8 percent, fertilizer and feed per worker will need to increase at 6.4 and 4.5 percent, 
respectively, and crop capital at more than 3.0 percent per year. 

The existence of an appropriate technology could have significant implications for policy and 
development strategies pursuing this goal of doubling output per worker in the coming years. Is the slow 
pace of technology adoption and TFP growth in SSA the result of inappropriateness of technology, given 
the very particular conditions and low levels of capitalization of agriculture in these countries? Should 
countries adapt technologies produced by advanced countries to their own input mix, or should they 
“adapt” their agricultural sector to use modern technologies more efficiently (for example, the debate of 
the poor smallholders versus commercial agriculture)? The appropriate technology hypothesis could bring 
a different perspective to this debate already taking place in SSA.  

37 



 

APPENDIX:  AGROECOLOGICAL ZONES 

Classification of countries in four main agroecologies was done using information from Lee et al. (2005), 
who worked with lengths of growing period and three climatic zones: tropical, temperate, and boreal. 
Table A.1 details the definition of global agroecological zones (AEZs) used in the Global Trade Analysis 
Project (GTAP) land use database, with the first six AEZs corresponding to tropical climate, the second 
six to temperate, and the last six to boreal.  

Table A.1 Definition of global agroecological zones (AEZs) 
Length of growing 
period in days Moisture regime Climate zone GTP class 

0–59 Arid Tropical AEZ1 

  Temperate AEZ7 

  Boreal AEZ13 

60–119 Dry semiarid Tropical AEZ2 

  Temperate AEZ8 

  Boreal AEZ14 

120–179 Moist semiarid Tropical AEZ3 

  Temperate AEZ9 

  Boreal AEZ15 

180–239 Subhumid Tropical AEZ4 

  Temperate AEZ10 

  Boreal AEZ16 

240–299 Humid Tropical AEZ5 

  Temperate AEZ11 

  Boreal AEZ17 

>300 days Humid; year-round growing season Tropical AEZ6 

  Temperate AEZ12 

  Boreal AEZ18 
Source:  Lee et al. (2005). 

We used information of area of pasture and cropland in the different agroecologies to determine 
the predominant agroecology in each country. With this information we grouped countries in our sample 
in four major groups: temperate humid, temperate subhumid, tropical humid, and tropical subhumid. The 
humid groups include the humid and humid year-round growing season, and the subhumid groups include 
the subhumid, moist semiarid, and arid agroecologies. Only two countries were defined as belonging to 
the boreal climate zone, so they were assigned to the temperate groups.  
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Table A.2 SSA countries by agroecology 

Agroecological zone Country 

Temperate Arid, semiarid Botswana, Namibia, South Africa, Swaziland, 
Zimbabwe 

 
Tropical 

Arid, semiarid, and subhumid 

Benin, Burkina Faso, Cameroon, Central African 
Republic, Chad, Gambia, Guinea, Guinea-Bissau, 
Kenya, Madagascar, Malawi, Mali, Mauritania, 
Mozambique, Niger, Nigeria, Senegal, Sierra 
Leone, Somalia, Sudan (former), Tanzania, Togo, 
Zambia 

Humid 
Angola, Burundi, Republic of the Congo, Côte 
d’Ivoire, Democratic Republic of Congo, Ethiopia 
(former), Gabon, Ghana, Liberia, Mauritius, 
Rwanda, Uganda 

Source:  Defined by authors. 
Note:  SSA = Africa south of the Sahara. 
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